Workshop: Singularity Containers in High-Performance Computing

Robert Grandin
Yasasvy Nanyam

28 March 2019
Outline

• Introduction to Containers
• Introduction to Singularity
• Singularity and HPC clusters
• Important Singularity commands
• Singularity and MPI
• Singularity recipes
• Demonstrate possible use cases
• Q&A, hands-on session
Introduction to Containers

Source: https://www.docker.com/resources/what-container
Introduction to Containers

- Daemon-based
- Requires administrator privileges
- Long-running services (web services, databases)

- No background daemon
- No special privileges
- User-space applications (scientific software)
Introduction to Singularity

- Little to no overhead
- Compatible with most stand-alone Docker images
- Build your own environment (BYOE)
 - Reproducibility/Collaboration; Distribute software stack with data
- Can build containers on local machine and copy to cluster
- Devices and directories are also visible inside the container
 - accelerator cards, networks, work directories, etc.
- User outside = user inside
- Maintain your existing workflow
 - works with SLURM, MPI
Singularity 2 vs. Singularity 3

- Parallel development, similar to Python2 & Python3
- Singularity 2 available on each ISU cluster
- Singularity 3 is backward-compatible
 - Containers built with Singularity 2 may be used on systems running Singularity 3
 - Containers built with Singularity 3 MAY NOT be used on systems running Singularity 2
Important Singularity Commands

- **pull** Get container images from repositories
- **exec** Run command in the container
- **shell** “Login to” the container for debugging
- **build** Create container from recipe
Important Singularity Variables

- SINGULARITY_CACHEDIR
- SINGULARITY_TMPDIR

Limited space in home directories. Set to $TMPDIR to avoid quota limits.

```bash
export SINGULARITY_CACHEDIR=$TMPDIR
export SINGULARITY_TMPDIR=$TMPDIR
```
Singularity pull

- Pull (download) container images from “hubs”
 - Docker - https://hub.docker.com/
 - Singularity - https://singularity-hub.org
 - Quay (Bioinformatics) - https://quay.io/search

singularity pull <hub>://<image>[::<tag>]

singularity pull docker://gcc:8.3.0
Singularity pull

```bash
{rgrandin@hpc-class09} > singularity pull docker://gcc:8.3.0
WARNING: pull for Docker Hub is not guaranteed to produce the
WARNING: same image on repeated pull. Use Singularity Registry
WARNING: (shub://) to pull exactly equivalent images.
Docker image path: index.docker.io/library/gcc:8.3.0
Cache folder set to /local/scratch/rgrandin/3563/docker
[9/9] |===================================| 100.0%
Importing: base Singularity environment
Exploding layer: sha256:22dbe790f71562dfd3d49406b1dfd1e85e50f3dd7cb2e97b3918376ca39cae4e.tar.gz

WARNING: Building container as an unprivileged user. If you run this container as root
WARNING: it may be missing some functionality.
Building Singularity image...
Singularity container built: /scratch/rgrandin/3563/gcc-8.3.0.simg
Cleaning up...
Done. Container is at: /scratch/rgrandin/3563/gcc-8.3.0.simg
```
Singularity exec

- Spawn a command within a container image
- Recommended way to use containers in HPC as it facilitates batch submissions and can be included as a part of your SLURM script.

singularity exec [options] image.simg command [command-args]
Singularity exec

• Useful options
 • --nv: Leverage GPUs
 • --bind: Bind mount directories to the containers
 • Note: /work, /ptmp, /home are mounted by default on ISU HPC clusters
 • --contain: Better isolate the container runtime from the host
 • --cleanenv: Clean the environment
 • --pwd: Initial working directory within the container
Singularity exec

```bash
{rgrandin@hpc-class09} > which gcc; gcc --version
/usr/bin/gcc

gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-36)
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

{rgrandin@hpc-class09} > singularity exec /scratch/rgrandin/3563/gcc-8.3.0.simg gcc --version
WARNING: Non existent 'bind path' source: '/work'
gcc (GCC) 8.3.0
Copyright (C) 2018 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
```
Singularity exec

```
{rgrandin@hpc-class09} > singularity exec /scratch/rgrandin/3563/gcc-8.3.0.simg df -hT
WARNING: Non existent 'bind path' source: '/work'

Filesystem                Type         Size  Used  Avail Use% Mounted on
 OverlayFS                overlay       1.0M   0   1.0M   0%  /
devtmpfs                 devtmpfs    48G    0   48G   0%  /dev
tmpfs                    tmpfs        48G    0   48G   0%  /dev/shm
/dev/mapper/rhel-local   xfs          2.5T  802M  2.5T  1%  /scratch
hpc-class-stor01:/hpc-class/ptmp  nfs4     30T   3.0T  27T  10%  /ptmp
/dev/mapper/rhel-rootvol xfs          20G    3G   17G  17%  /tmp
hpc-class-stor01:/hpc-class/home/rgrandin  nfs4   44T  477G   44T   2%  /home/rgrandin
tmpfs                    tmpfs        16M   16K   16M   1%  /etc/group..
```

- [] Host filesystem available within container
- [] Network filesystem available within container
Singularity shell

• Interactively access the container image
• Similar to logging-in to a machine via SSH
• Useful for debugging during interactive sessions (e.g., `salloc`), not suitable for batch submissions
Singularity + MPI

- MPI installed both inside and on the host

```bash
{rgrandin@hpc-class09} $ module load openmpi/3.1.0-athyebf

{rgrandin@hpc-class09} $ singularity pull shub://michael-tn/mpi-hello-world:ompi3
Progress |===================================| 100.0%
Done. Container is at: /scratch/rgrandin/3563/michael-tn-mpi-hello-world-master-ompi3.simg

{rgrandin@hpc-class09} $ mpirun -np 2 singularity exec /scratch/rgrandin/3563/michael-tn-mpi-hello-world-master-ompi3.simg mpi_hello_world
WARNING: Non existent 'bind path' source: '/work'
WARNING: Non existent 'bind path' source: '/work'
Hello world from processor hpc-class09, rank 0 out of 2 processors
Hello world from processor hpc-class09, rank 1 out of 2 processors
```
Singularity build

• Build on Singularity Hub. Requires a GitHub account.
 • Relatively slow, resource limits can require splitting container into “layers” and building piece-by-piece.
 • Great for publishing/distributing the final container
• Build locally. Requires administrator privileges on the build machine. (not possible on ISU HPC systems)
 • Often faster to iterate and debug the container-build process
 • If you don’t have admin privileges, ask for a VM to use
• Once added to Singularity Hub, containers can be pulled by any machine where singularity is installed
Singularity recipe

- Builds upon other containers
- Utilize package managers to install software into container
 - apt, yum
 - spack

Bootstrap: docker
From: centos
%post

```bash
echo "Installing Development Tools YUM group"
yum -y groupinstall "Development Tools"

echo "Installing OpenMPI into container..."
# Here we are at the base, /, of the container
git clone https://github.com/open-mpi/ompi.git
cd ompi

# Now at /ompi
git checkout 45fb684 # 3.1.3

./autogen.pl
./configure --prefix=/usr/local

make
make install

/usr/local/bin/mpicc examples/ring_c.c -o /usr/bin/mpi_ring
```

CentOS-based container with locally-built OpenMPI
Singularity recipe

- Builds upon other containers
- Utilize package managers to install software into container
 - apt, yum
 - spack

```
Bootstrap:shub
From:ResearchIT/spack-singularity:spack

%labels
MAINTAINER baber@iastate.edu
APPLICATION trinity

%help
This container provides trinity

%environment
source /etc/profile.d/modules.sh
module load trinity

%post
export SPACK_ROOT=/opt/spack
export PATH=$SPACK_ROOT/bin:$PATH
yum -y install bc paste
yum clean all
export FORCE_UNSAFE_CONFIGURE=1
source $SPACK_ROOT/share/spack/setup-env.sh
spack install trinity

%runscript
exec Trinity "$@
```
For more information...

- https://www.hpc.iastate.edu/guides/containers
- https://github.com/ResearchIT/spack-singularity
- https://github.com/singularityhub/singularityhub.github.io/wiki
- https://www.sylabs.io/guides/2.6/user-guide
- https://singularity-hub.org
- https://hub.docker.com
- https://quay.io/search

- As always: hpc-help@iastate.edu
Hands-On

• Demonstrations
 • Getting started with Singularity Hub
 • Using Singularity Hub to build a container from a recipe
 • Building locally from a recipe
 • Using containers
 • Compiling with GCC 8.3
 • Running TensorFlow on a GPU
 • Running hisat2

• Workshop, Q&A
Getting Started with Singularity Hub

• Prerequisite: GitHub account
 • Free
• https://singularity-hub.org
• Simply click “Login”
Using Singularity Hub to Build

- Create a new GitHub repository for your recipe
- Multiple recipes can be hosted in the same repository
- Singularity Hub auto-builds recipes named “Singularity”
- Specify tags by appending tag name to recipe file
 - E.g.: “Singularity” → “Singularity.v1.2.3” will apply tag “v1.2.3” to the container
Using Singularity Hub to Build

Create a new repository
A repository contains all project files, including the revision history.

Owner: ISU-HPC
Repository name: hisat2

Great repository names are short and memorable. Need inspiration? How about stunning-engine?

Description [optional]
Singularity recipe for hisat2

Public: Anyone can see this repository. You choose who can commit.
Private: You choose who can see and commit to this repository.

Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing repository.

Add .gitignore: None Add a license: None

Create repository
Using Singularity Hub to Build

Singularity recipe for hisat2

hisat2

Singularity recipe for hisat2

```
1  Bootstrap: docker
2  From: rgrandin@iastate.edu
3  MAINTAINER rgrandin@iastate.edu
4  APPLICATION hisat2
5
6  %help
7  This container provides hisat2
8
9  %post
10  %runscript
11  exec hisat2 "30"
```
Using Singularity Hub to Build

New Container Build

- ISU-HPC/augustus
- ISU-HPC/bammm-groopm-checkm
- ISU-HPC/big-scape
- ISU-HPC/broker
- ISU-HPC/cDNA_cupcake
- ISU-HPC/ceres-jupyter
- ISU-HPC/CloudCompare
- ISU-HPC/crispr-clav
- ISU-HPC/dmtcp
- ISU-HPC/hisat2
- ISU-HPC/issu-spack
- ISU-HPC/radius-client
- ISU-HPC/jupyter
Using Singularity Hub to Build

https://www.singularity-hub.org/collections/2617

3.5 minutes
Building Locally from a Recipe

Bootstrap: docker
From: makaho/hisat2-zstd

%labels
MAINTAINER rgrandin@iastate.edu
APPLICATION hisat2

%help
This container provides hisat2

%runscript
exec hisat2 "@"

Singularity

{root@d5q4v2g2} # singularity build hisat2.simg Singularity

1.75 minutes

{root@d5q4v2g2} # ls -alh
total 319M
drwxr-xr-x. 2 root root 4 Mar 27 09:06 .
drwxr-xr-x. 10 rgrandin root 10 Mar 27 09:06 ..
-rw-r-xr-x. 1 root root 319M Mar 27 09:01 hisat2.simg
-rw-r--r--. 1 root Root 170 Mar 27 08:59 Singularity
Demo: Compiling with GCC 4.8.5

```c
#include <stdio.h>

int main() {
    printf("Hello, world!\n");
    return 0;
}
```

Compilation using system gcc (v4.8.5)

```
{rgrandin@hpc-class06} gcc hello.c
hello.c: In function ‘main’:
hello.c:5:5: warning: incompatible implicit declaration of built-in function ‘printf’ [enabled by default]
    printf("Hello, world!\n");
^  
```
Demo: Compiling with GCC 8.3.0

```bash
{rgrandin@hpc-class06} > singularity pull docker://gcc:8.3.0

Done. Container is at: ./gcc-8.3.0.simg

{rgrandin@hpc-class06}@[ptmp/rgrandin/container-demo] > singularity exec ./gcc-8.3.0.simg gcc hello.c

WARNING: Non existent 'bind path' source: '/work'

Typical warnings

```stdio.h```

Suggested Fix

```c
#include <stdio.h>
```

Compilation using containerized gcc (v8.3.0)
Import `tensorflow`
import tensorflow as tf

Initialize two constants
x1 = tf.constant([1,2,3,4])
x2 = tf.constant([5,6,7,8])

Multiply
result = tf.multiply(x1, x2)

Print the result
print(result)

Initialize the Session
sess = tf.Session()

Print the result
print(sess.run(result))

Close the session
sess.close()
Running TensorFlow

```bash
{rgrandin@hpc-class06}> singularity pull shub://ISU-HPC/machine-learning ml.simg
Progress |===================================| 100.0%
Done. Container is at: /ptmp/rgrandin/container-demo/ml.simg
```

Pull the container

```bash
{rgrandin@hpc-class06}[/ptmp/rgrandin/container-demo]> singularity exec ml.simg python tf-test.py
WARNING: Non existent 'bind path' source: '/work'
Tensor("Mul:0", shape=(4,), dtype=int32)
2019-03-27 09:59:05.827967: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:150] kernel driver does not appear to be running on this host (hpc-class06): /proc/driver/nvidia/version does not exist
```

Run the test script inside the container – NO GPU

Print() statement outputs

Error that CUDA device is unavailable (container built with GPU expectation)
Running TensorFlow on GPU

```bash
{rgrandin@hpc-class-gpu02}[/ptmp/rgrandin/container-demo]> singularity exec --nv ml.simg python tf-test.py
```

```python
Tensor("Mul:0", shape=(4,), dtype=int32)
```

name: Tesla K20m major: 3 minor: 5 memoryClockRate(GHz): 0.7055
pciBusID: 0000:82:00.0
totalMemory: 4.63GiB freeMemory: 4.56GiB
2019-03-27 09:55:31.723717: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4327 MB memory) -> physical GPU (device: 0, name: Tesla K20m, pci bus id: 0000:82:00.0, compute capability: 3.5)

[5 12 21 32]

Run the test script inside the container – with GPU

Print() statement outputs

Info about CUDA device used
{rgrandin@hpc-class06}> singularity pull shub://ISU-HPC/hisat2

{rgrandin@hpc-class06}> wget ftp://ftp.ensemblgenomes.org/pub/release-42/plants/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.chromosome.1.fa.gz

{rgrandin@hpc-class06}> gunzip Arabidopsis_thaliana.TAIR10.dna.chromosome.1.fa.gz
{rgrandin@hpc-class06}> cp -r /ptmp/container-workshop/samples .
{rgrandin@hpc-class06}> mkdir HS_out
{rgrandin@hpc-class06}> module load parallel
{rgrandin@hpc-class06}> parallel -j 4 "singularity exec hisat2-zstd.simg hisat2 -p 4 -x At_chr1 -1 {1} -2 {2} -S HS_out/{1/.}.sam >& HS_out/{1/.}.log" ::: samples/*_1.* :::+ samples/*_2.*
{rgrandin@hpc-class06}> ls -lh HS_out/
total 16M
-rw-r--r--. 1 rgrandin domain users 1.3K Mar 27 13:18 SRR4420293_1.fastq.log
-rw-r--r--. 1 rgrandin domain users 5.2M Mar 27 13:18 SRR4420293_1.fastq.sam

Running hisat2 within a Singularity container
Q&A – Hands-on Session

• Questions?

• Try to run these examples yourself
 • Compute nodes: `salloc -N 1 -n 4 -t 15:00`
 • GPU nodes: `salloc -N 1 -n 4 -t 15:00 --gres gpu:1`

• Be considerate with resource requests. We have to share the cluster.