

Intel® MPI Library for Linux* OS

Developer Guide

2

Contents
Legal Information ... 4

1. Introduction .. 5

1.1. Introducing Intel® MPI Library ... 5

1.2. Conventions and Symbols .. 5

1.3. Related Information .. 5

2. Installation and Licensing .. 7

2.1. Installation ... 7

2.2. Licensing for Intel® MPI Library Distributions .. 7

3. Prerequisite Steps .. 8

4. Compiling and Linking .. 9

4.1. Compiling an MPI Program .. 9

4.1.1. Compiling an MPI/OpenMP* Program .. 9
4.1.2. Static vs. Dynamic Linking .. 9
4.1.3. Adding Debug Information.. 10
4.1.4. Test MPI Programs .. 10

4.2. Compilers Support .. 10

5. Running Applications ..11

5.1. Running an MPI Program ... 11

5.2. Running an MPI/OpenMP* Program ... 11

5.3. MPMD Launch Mode .. 12

5.4. Job Schedulers Support ... 13

5.4.1. Altair* PBS Pro*, TORQUE*, and OpenPBS* ... 13
5.4.2. IBM* Platform LSF* ... 13
5.4.3. Parallelnavi NQS* .. 13
5.4.4. SLURM* .. 13
5.4.5. Univa* Grid Engine* .. 14
5.4.6. SIGINT, SIGTERM Signals Intercepting ... 14
5.4.7. Controlling Per-Host Process Placement ... 14

5.5. Cross-OS Launch Mode .. 14

6. Configuring Program Launch ...16

6.1. Selecting Library Configuration .. 16

6.2. Controlling Process Placement ... 16

6.2.1. Specifying Hosts .. 16
6.2.2. Using Machine File .. 17
6.2.3. Using Argument Sets ... 17

6.3. Selecting Fabrics .. 18

6.3.1. Default Behavior .. 19
6.3.2. Defining Fabric List ... 19
6.3.3. Selecting Specific Fabric .. 19
6.3.4. Advanced Fabric Control.. 20

7. Debugging..21

7.1. GDB*: The GNU* Project Debugger .. 21

Intel® MPI Library Developer Guide for Linux* OS

3

7.2. TotalView* Debugger ... 21

7.2.1. Enabling Debug Session Restart ... 21
7.2.2. Attaching to Process .. 21
7.2.3. Displaying Message Queue ... 22

7.3. DDT* Debugger ... 22

7.4. Using -gtool for Debugging ... 22

8. Statistics and Analysis ..23

8.1. Getting Debug Information ... 23

8.2. Gathering Statistics ... 24

8.2.1. Native Statistics .. 24
8.2.2. IPM Statistics ... 24
8.2.3. Native and IPM Statistics .. 25
8.2.4. Region Control with MPI_Pcontrol .. 25

8.3. Tracing and Correctness Checking .. 26

8.3.1. High-Level Performance Analysis .. 26
8.3.2. Tracing Applications .. 27
8.3.3. Checking Correctness .. 27

8.4. Interoperability with Other Tools ... 27

9. Tuning with mpitune Utility ...29

9.1. Cluster Specific Tuning ... 29

9.1.1. Reducing Tuning Time .. 30
9.1.2. Replacing Default Benchmarks ... 31

9.2. Application Specific Tuning .. 31

9.2.1. Fast Application Specific Mode ... 31
9.2.2. Topology-Aware Rank Placement Optimization ... 32

9.3. General mpitune Capabilities ... 33

9.3.1. Displaying Tasks Involved ... 33
9.3.2. Enabling Silent Mode ... 34
9.3.3. Setting Time Limit ... 34
9.3.4. Improving Accuracy of Results .. 34

9.4. Tuning Applications Manually ... 34

10. Intel® Many Integrated Core Architecture Support ..35

10.1. Prerequisites ... 35

10.2. Building MPI Applications ... 35

10.3. Running MPI Applications ... 36

11. Troubleshooting ..38

11.1. General Troubleshooting Procedures ... 38

11.2. Examples of MPI Failures .. 38

11.2.1. Communication Problems .. 38
11.2.2. Environment Problems .. 41
11.2.3. Other Problems ... 44

Legal Information

4

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from

course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information

provided here is subject to change without notice. Contact your Intel representative to obtain the latest

forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause

deviations from published specifications. Current characterized errata are available on request.

Intel technologies features and benefits depend on system configuration and may require enabled hardware,

software or service activation. Learn more at Intel.com, or from the OEM or retailer.

Intel, the Intel logo, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other

countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations

that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction

sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this

product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation.

5

1. Introduction
The Intel® MPI Library Developer Guide explains how to use the Intel® MPI Library in some common usage

scenarios. It provides information regarding compiling, running, debugging, tuning and analyzing MPI

applications, as well as troubleshooting information.

This Developer Guide helps a user familiar with the message passing interface start using the Intel® MPI Library.

For full information, see the Intel® MPI Library Developer Reference.

1.1. Introducing Intel® MPI Library
The Intel® MPI Library is a multi-fabric message-passing library that implements the Message Passing

Interface, version 3.1 (MPI-3.1) specification. It provides a standard library across Intel® platforms that:

 Delivers best in class performance for enterprise, divisional, departmental and workgroup high

performance computing. The Intel® MPI Library focuses on improving application performance on

Intel® architecture based clusters.

 Enables you to adopt MPI-3.1 functions as your needs dictate

The product comprises the following main components:

 Runtime Environment (RTO) includes the tools you need to run programs, including scalable process

management system (Hydra*), supporting utilities, shared (.so) libraries, and documentation.

 Software Development Kit (SDK) includes all of the Runtime Environment components plus

compilation tools, including compiler drivers such as mpiicc, include files and modules, static (.a)

libraries, debug libraries, and test codes.

1.2. Conventions and Symbols
The following conventions are used in this document:

This type style Document or product names.

This type style Commands, arguments, options, file names.

THIS_TYPE_STYLE Environment variables.

<this type style> Placeholders for actual values.

[items] Optional items.

{ item | item } Selectable items separated by vertical bar(s).

(SDK only) For software development kit (SDK) users only.

1.3. Related Information
To get more information about the Intel® MPI Library, explore the following resources:

Introduction

6

 Intel® MPI Library Release Notes for updated information on requirements, technical support, and

known limitations.

 Intel® MPI Library Developer Reference for in-depth knowledge of the product features, commands,

options, and environment variables.

 Intel® MPI Library for Linux* OS Knowledge Base for additional troubleshooting tips and tricks,

compatibility notes, known issues, and technical notes.

For additional resources, see:

 Intel® MPI Library Product Web Site

 Intel® Software Documentation Library

 Intel® Software Products Support

http://software.intel.com/en-us/articles/intel-mpi-library-for-linux-kb/all
http://www.intel.com/go/mpi
http://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/support

7

2. Installation and Licensing

2.1. Installation
If you have a previous version of the Intel® MPI Library for Linux* OS installed, you do not need to uninstall it

before installing a newer version.

Extract the l_mpi[-rt]_p_<version>.<package_num>.tar.gz package by using following command:

$ tar –xvzf l_mpi[-rt]_p_<version>.<package_num>.tar.gz

This command creates the subdirectory l_mpi[-rt]_p_<version>.<package_num>.

To start installation, run install.sh. The default installation path for the Intel® MPI Library is

/opt/intel/compilers_and_libraries_<version>.<update>.<package#>/linux/mpi.

There are two different installations:

 RPM-based installation – this installation requires root password. The product can be installed either

on a shared file system or on each node of your cluster.

 Non-RPM installation – this installation does not require root access and it installs all scripts, libraries,

and files in the desired directory (usually $HOME for the user).

Scripts, include files, and libraries for different architectures are located in different directories. By default, you

can find binary files and all needed scripts under <installdir>/<arch> directory. For example, for Intel® 64

architecture, <arch> is bin64.

For more information on installation, see Intel® MPI Library for Linux* OS Installation Guide. You can also find

information about how to install the product in silent mode and some useful installer options.

2.2. Licensing for Intel® MPI Library Distributions
There are two different licensing options:

 Intel® MPI Library Runtime Environment (RTO) license. The license covers everything you need to run

Intel® MPI Library-based applications and is free and permanent.

 Intel® MPI Library Software Development Kit (SDK) license. This license covers all of Runtime

Environment components as well as the compilation tools: compiler drivers (mpiicc, mpicc, and so

on), files and modules, static (.a) libraries, debug libraries, trace libraries, and test sources. This license

is fee-based, with several options described in the product end-user license agreement (EULA).

For licensing details refer to the EULA, or visit http://www.intel.com/go/mpi.

http://www.intel.com/go/mpi

8

3. Prerequisite Steps
Before you start using any of the Intel® MPI Library functionality, make sure to establish the proper

environment for Intel MPI Library. Follow these steps:

1. Set up the Intel MPI Library environment. Source the mpivars.[c]sh script:

$. <installdir>/bin/mpivars.sh

By default, <installdir> is

/opt/intel/compilers_and_libraries_<version>.<update>.<package>/linux/mpi.

2. To run an MPI application on a cluster, Intel MPI Library needs to know names of all its nodes. Create a

text file listing the cluster node names. The format of the file is one name per line, and the lines

starting with # are ignored. To get the name of a node, use the hostname utility.

A sample host file may look as follows:

$ cat ./hosts

this line is ignored

clusternode1

clusternode2

clusternode3

clusternode4

3. For communication between cluster nodes, Intel MPI Library uses the SSH protocol. You need to

establish a passwordless SSH connection to ensure proper communication of MPI processes. Intel MPI

Library provides the sshconnectivity.exp script that helps you do the job. It automatically

generates and distributes SSH authentication keys over the nodes.

The script is located at

/opt/intel/compilers_and_libraries_<version>.<update>.<package>/linux/mpi. Run

the script and pass the previously created host file as an argument.

If the script does not work for your system, try generating and distributing authentication keys

manually.

After completing these steps, you are ready to use Intel® MPI Library.

9

4. Compiling and Linking

4.1. Compiling an MPI Program
This topic describes the basic steps required to compile and link an MPI program, using the Intel® MPI Library

SDK.

To simplify linking with MPI library files, Intel MPI Library provides a set of compiler wrapper scripts with the

mpi prefix for all supported compilers. To compile and link an MPI program, do the following:

1. Make sure you have a compiler in your PATH environment variable. For example, to check if you have

the Intel® C Compiler, enter the command:

$ which icc

If the command is not found, add the full path to your compiler into the PATH. For Intel® compilers,

you can source the compilervars.[c]sh script to set the required environment variables.

2. Source the mpivars.[c]sh script to set up the proper environment for Intel MPI Library. For

example, using the Bash* shell:

$. <installdir>/bin64/mpivars.sh

3. Compile your MPI program using the appropriate compiler wrapper script. For example, to compile a C

program with the Intel® C Compiler, use the mpiicc script as follows:

$ mpiicc myprog.c -o myprog

You will get an executable file myprog in the current directory, which you can start immediately. For

instructions of how to launch MPI applications, see Running Applications.

NOTE

By default, the resulting executable file is linked with the multi-threaded optimized library. If you need to use

another library configuration, see Selecting Library Configuration.

For details on the available compiler wrapper scripts, see the Developer Reference.

See Also

Intel® Many Integrated Core Architecture Support

Intel® MPI Library Developer Reference, section Command Reference > Compiler Commands

4.1.1. Compiling an MPI/OpenMP* Program
To compile a hybrid MPI/OpenMP* program using the Intel® compiler, use the -qopenmp option. For example:

$ mpiicc -qopenmp test.c -o testc

This enables the underlying compiler to generate multi-threaded code based on the OpenMP* pragmas in the

source. For details on running such programs, refer to Running an MPI/OpenMP* Program.

4.1.2. Static vs. Dynamic Linking
By default, when compiling an application, the Intel MPI Library gets dynamically linked with it. To link the

library statically, use the -static_mpi compiler wrapper option. For example:

$ mpiicc -static_mpi test.c -o testc

Compiling and Linking

10

To see the resulting compilation command line without compiling the application, you can use the -show

option.

4.1.3. Adding Debug Information
If you need to debug your application, add the -g option to the compilation command line. For example:

$ mpiicc -g test.c -o testc

This adds debug information to the resulting binary, enabling you to debug your application. Debug

information is also used by analysis tools like Intel® Trace Analyzer and Collector for displaying locations of

application functions in the source code.

4.1.4. Test MPI Programs
Intel® MPI Library comes with a set of source files for simple MPI programs that enable you to test your

installation. Test program sources are available for all supported programming languages and are located at

<installdir>/test, where <installdir> is

/opt/intel/compilers_and_libraries_<version>.x.xxx/linux/mpi by default.

4.2. Compilers Support
Intel® MPI Library supports the GCC* and Intel® compilers out of the box. It uses binding libraries to provide

support for different glibc versions and different compilers. These libraries provide C++, Fortran 77, and

Fortran 90 interfaces.

The following binding libraries are used for GCC* and Intel® compilers:

 libmpicxx.{a|so} – for g++ version 3.4 or higher

 libmpifort.{a|so} – for g77/gfortran interface for GCC and Intel® compilers

Your application gets linked against the correct GCC* and Intel® compilers binding libraries, if you use one of

the following compiler wrappers: mpicc, mpicxx, mpifc, mpif77, mpif90, mpigcc, mpigxx, mpiicc,

mpiicpc, or mpiifort.

For other compilers, PGI* and Absoft* in particular, there is a binding kit that allows you to add support for a

certain compiler to the Intel® MPI Library. This binding kit provides all the necessary source files, convenience

scripts, and instructions you need, and is located in the <install_dir>/binding directory.

To add support for the PGI* C, PGI* Fortran 77, Absoft* Fortran 77 compilers, you need to manually create the

appropriate wrapper script (see instructions in the binding kit Readme). When using these compilers, keep in

mind the following limitations:

 Your PGI* compiled source files must not transfer long double entities

 Your Absoft* based build procedure must use the -g77, -B108 compiler options

To add support for the PGI* C++, PGI* Fortran 95, Absoft* Fortran 95, and GNU* Fortran 95 (4.0 and newer)

compilers, you need to build extra binding libraries. Refer to the binding kit Readme for detailed instructions.

11

5. Running Applications

5.1. Running an MPI Program
Before running an MPI program, place it to a shared location and make sure it is accessible from all cluster

nodes. Alternatively, you can have a local copy of your program on all the nodes. In this case, make sure the

paths to the program match.

Run the MPI program using the mpirun command. The command line syntax is as follows:

$ mpirun -n <# of processes> -ppn <# of processes per node> -f <hostfile> ./myprog

For example:

$ mpirun -n 4 -ppn 2 -f hosts ./myprog

In the command line above:

 -n sets the number of MPI processes to launch; if the option is not specified, the process manager

pulls the host list from a job scheduler, or uses the number of cores on the machine.

 -ppn sets the number of processes to launch on each node; if the option is not specified, processes

are assigned to the physical cores on the first node; if the number of cores is exceeded, the next node

is used.

 -f specifies the path to the host file listing the cluster nodes; alternatively, you can use the -hosts

option to specify a comma-separated list of nodes; if hosts are not specified, the local node is used.

 myprog is the name of your MPI program.

The mpirun command is a wrapper around the mpiexec.hydra command, which invokes the Hydra process

manager. Consequently, you can use all mpiexec.hydra options with the mpirun command.

For the list of all available options, run mpirun with the -help option, or see the Intel® MPI Library Developer

Reference, section Command Reference > Hydra Process Manager Command.

NOTE

The commands mpirun and mpiexec.hydra are interchangeable. However, you are recommended to use

the mpirun command for the following reasons:

 You can specify all mpiexec.hydra options with the mpirun command.

 The mpirun command detects if the MPI job is submitted from within a session allocated using a job

scheduler like PBS Pro* or LSF*. Thus, you are recommended to use mpirun when an MPI program is

running under a batch scheduler or job manager.

See Also

Controlling Process Placement

Job Schedulers Support

Intel® Many Integrated Core Architecture Support

5.2. Running an MPI/OpenMP* Program
To run a hybrid MPI/OpenMP* program, follow these steps:

Running Applications

12

1. Make sure the thread-safe (debug or release, as desired) Intel® MPI Library configuration is enabled

(this is the default behavior). To switch to such configuration, source mpivars.[c]sh with the

appropriate argument. For example:

$ source mpivars.sh release_mt

2. Set the I_MPI_PIN_DOMAIN environment variable to specify the desired process pinning scheme. The

recommended value is omp:

$ export I_MPI_PIN_DOMAIN=omp

This sets the process pinning domain size to be equal to OMP_NUM_THREADS. Therefore, if for example

OMP_NUM_THREADS is equal to 4, each MPI process can create up to four threads within the

corresponding domain (set of logical processors). If OMP_NUM_THREADS is not set, each node is

treated as a separate domain, which allows as many threads per MPI process as there are cores.

NOTE

For pinning OpenMP* threads within the domain, use the KMP_AFFINITY environment variable. See the Intel®

compiler documentation for more details.

3. Run your hybrid program as a regular MPI program. You can set the OMP_NUM_THREADS and

I_MPI_PIN_DOMAIN variables directly in the launch command. For example:

$ mpirun -n 4 -genv OMP_NUM_THREADS=4 -genv I_MPI_PIN_DOMAIN=omp ./myprog

See Also

Intel® MPI Library Developer Reference, section Tuning Reference > Process Pinning > Interoperability with

OpenMP*.

5.3. MPMD Launch Mode
Intel® MPI Library supports the multiple programs, multiple data (MPMD) launch mode. There are two ways to

do this.

The easiest way is to create a configuration file and pass it to the -configfile option. A configuration file

should contain a set of arguments for mpirun, one group per line. For example:

$ cat ./mpmd_config

-n 1 -host node1 ./io <io_args>

-n 4 -host node2 ./compute <compute_args_1>

-n 4 -host node3 ./compute <compute_args_2>

$ mpirun -configfile mpmd_config

Alternatively, you can pass a set of options to the command line by separating each group with a colon:

$ mpirun -n 1 -host node1 ./io <io_args> :\

-n 4 -host node2 ./compute <compute_args_1> :\

-n 4 -host node3 ./compute <compute_args_2>

The examples above are equivalent. The io program is launched as one process on node1, and the compute

program is launched on node2 and node3 as four processes on each.

When an MPI job is launched, the working directory is set to the working directory of the machine where the

job is launched. To change this, use the -wdir <path>.

Use –env <var> <value> to set an environment variable for only one argument set. Using –genv instead

applies the environment variable to all argument sets. By default, all environment variables are propagated

from the environment during the launch.

Intel® MPI Library Developer Guide for Linux* OS

13

5.4. Job Schedulers Support
Intel® MPI Library supports the majority of commonly used job schedulers in the HPC field.

The following job schedulers are supported on Linux* OS:

 Altair* PBS Pro*

 Torque*

 OpenPBS*

 IBM* Platform LSF*

 Parallelnavi* NQS*

 SLURM*

 Univa* Grid Engine*

The support is implemented in the mpirun wrapper script. mpirun detects the job scheduler under which it is

started by checking specific environment variables and then chooses the appropriate method to start an

application.

5.4.1. Altair* PBS Pro*, TORQUE*, and OpenPBS*
If you use one of these job schedulers, and $PBS_ENVIRONMENT exists with the value PBS_BATCH or

PBS_INTERACTIVE, mpirun uses $PBS_NODEFILE as a machine file for mpirun. You do not need to specify

the –machinefile option explicitly.

An example of a batch job script may look as follows:

#PBS –l nodes=4:ppn=4

#PBS –q queue_name

cd $PBS_O_WORKDIR

mpirun –n 16 ./myprog

5.4.2. IBM* Platform LSF*
If you use the IBM* Platform LSF* job scheduler, and $LSB_MCPU_HOSTS is set, it will be parsed to get the list

of hosts for the parallel job. $LSB_MCPU_HOSTS does not store the main process name, therefore the local

host name will be added to the top of the hosts list. Based on this host list, a machine file for mpirun is

generated with a unique name: /tmp/lsf_${username}.$$. The machine file is removed when the job is

complete.

For example, to submit a job, run the command:

$ bsub -n 16 mpirun -n 16 ./myprog

5.4.3. Parallelnavi NQS*
If you use Parallelnavi NQS* job scheduler and the $ENVIRONMENT, $QSUB_REQID, $QSUB_NODEINF options

are set, the $QSUB_NODEINF file is used as a machine file for mpirun. Also, /usr/bin/plesh is used as

remote shell by the process manager during startup.

5.4.4. SLURM*
If the $SLURM_JOBID is set, the $SLURM_TASKS_PER_NODE, $SLURM_NODELIST environment variables will

be used to generate a machine file for mpirun. The name of the machine file is

/tmp/slurm_${username}.$$. The machine file will be removed when the job is completed.

For example, to submit a job, run the command:

Running Applications

14

$ srun -N2 --nodelist=host1,host2 -A

$ mpirun -n 2 ./myprog

When running under SLURM on a large scale, the job startup process make take a considerable amount of

time. Use the I_MPI_SLURM_EXT variable to reduce the job startup time:

$ export I_MPI_SLURM_EXT=on

5.4.5. Univa* Grid Engine*
If you use the Univa* Grid Engine* job scheduler and the $PE_HOSTFILE is set, then two files will be

generated: /tmp/sge_hostfile_${username}_$$ and /tmp/sge_machifile_${username}_$$. The

latter is used as the machine file for mpirun. These files are removed when the job is completed.

5.4.6. SIGINT, SIGTERM Signals Intercepting
If resources allocated to a job exceed the limit, most job schedulers terminate the job by sending a signal to all

processes.

For example, Torque* sends SIGTERM three times to a job and if this job is still alive, SIGKILL will be sent to

terminate it.

For Univa* Grid Engine*, the default signal to terminate a job is SIGKILL. Intel® MPI Library is unable to

process or catch that signal causing mpirun to kill the entire job. You can change the value of the termination

signal through the following queue configuration:

1. Use the following command to see available queues:

$ qconf -sql

2. Execute the following command to modify the queue settings:

$ qconf -mq <queue_name>

3. Find terminate_method and change signal to SIGTERM.

4. Save queue configuration.

5.4.7. Controlling Per-Host Process Placement
When using a job scheduler, by default Intel MPI Library uses per-host process placement provided by the

scheduler. This means that the -ppn option has no effect. To change this behavior and control process

placement through -ppn (and related options and variables), use the

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT environment variable:

$ export I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=off

5.5. Cross-OS Launch Mode
Intel® MPI Library provides support for the heterogeneous Windows*-Linux* environment. This means that you

can run MPI programs on nodes that operate on Windows and Linux OS as single MPI jobs, using the Hydra

process manager.

To run a mixed Linux-Windows MPI job, do the following:

1. Make sure the Intel MPI Library is installed and operable, and the product versions match on all nodes.

2. On the Windows hosts, make sure the Hydra service is running:

> hydra_service -status

If the service is not running, use the -start option to start it.

3. When running a mixed job, set the following options and environment variables:

Intel® MPI Library Developer Guide for Linux* OS

15

 -demux select

 -genv I_MPI_FABRICS=shm:tcp

 -host <hostname>

 -hostos <os> for nodes operating on the other OS

 -env I_MPI_ROOT and -env PATH – local environment variables for the specified host

 (optional) -bootstrap ssh – specifies the remote node access mechanism. If the option is not

specified, the Hydra service is used. If you specify ssh, make sure the SSH connectivity is

established between the Linux and Windows nodes.

For example, the following command runs the IMB-MPI1 benchmark under the Windows-Linux

heterogeneous environment:

$ mpirun -demux select -genv I_MPI_FABRICS=shm:tcp -env

I_MPI_ROOT=<windows_installdir> \

-env PATH=<windows_installdir>\<arch>\bin -hostos windows -host <windows_host> -n 2

IMB-MPI1 pingpong :\

-host <linux_host> -n 3 <linux_installdir>/<arch>/bin/IMB-MPI1 pingpong

16

6. Configuring Program Launch

6.1. Selecting Library Configuration
Before running an application, you can specify a particular configuration of the Intel® MPI Library to be used,

depending on your purposes. This can be a library optimized for single- or multi-threading, debug or release

version.

To specify the configuration, source the mpivars.[c]sh script with appropriate arguments. For example:

$. <installdir>/bin64/mpivars.sh release

You can use the following arguments:

Argument Definition

release Set this argument to use single-threaded optimized library.

debug Set this argument to use single-threaded debug library.

release_mt Set this argument to use multi-threaded optimized library (default).

debug_mt Set this argument to use multi-threaded debug library.

NOTE

You do not need to recompile the application to change the configuration. Source the mpivars.[c]sh script

with appropriate arguments before an application launch.

Alternatively, if your shell does not support sourcing with arguments, you can use the I_MPI_LIBRARY_KIND

environment variable to set an argument for mpivars.[c]sh. See the Intel® MPI Library Developer Reference

for details.

6.2. Controlling Process Placement
Placement of MPI processes over the cluster nodes plays a significant role in application performance. Intel®

MPI Library provides several options to control process placement.

By default, when you run an MPI program, the process manager launches all MPI processes specified with -n

on the current node. If you use a job scheduler, processes are assigned according to the information received

from the scheduler.

6.2.1. Specifying Hosts
You can explicitly specify the nodes on which you want to run the application using the -hosts option. This

option takes a comma-separated list of node names as an argument. Use the -ppn option to specify the

number of processes per node. For example:

$ mpirun -n 4 -ppn 2 -hosts node1,node2 ./testc

Hello world: rank 0 of 4 running on node1

Hello world: rank 1 of 4 running on node1

Intel® MPI Library Developer Guide for Linux* OS

17

Hello world: rank 2 of 4 running on node2

Hello world: rank 3 of 4 running on node2

To get the name of a node, use the hostname utility.

An alternative to using the -hosts option is creation of a host file that lists the cluster nodes. The format of

the file is one name per line, and the lines starting with # are ignored. Use the -f option to pass the file to

mpirun. For example:

$ cat ./hosts

#nodes

node1

node2

$ mpirun -n 4 -ppn 2 -f hosts ./testc

This program launch produces the same output as the previous example.

If the -ppn option is not specified, the process manager assigns as many processes to the first node as there

are physical cores on it. Then the next node is used. That is, assuming there are four cores on node1 and you

launch six processes overall, four processes are launched on node1, and the remaining two processes are

launched on node2. For example:

$ mpirun -n 6 -hosts node1,node2 ./testc

Hello world: rank 0 of 6 running on node1

Hello world: rank 1 of 6 running on node1

Hello world: rank 2 of 6 running on node1

Hello world: rank 3 of 6 running on node1

Hello world: rank 4 of 6 running on node2

Hello world: rank 5 of 6 running on node2

NOTE

If you use a job scheduler, specifying hosts is unnecessary. The processes manager uses the host list provided

by the scheduler.

6.2.2. Using Machine File
A machine file is similar to a host file with the only difference that you can assign a specific number of

processes to particular nodes directly in the file. Contents of a sample machine file may look as follows:

$ cat ./machines

node1:2

node2:2

Specify the file with the -machine option. Running a simple test program produces the following output:

$ mpirun -machine machines ./testc

Hello world: rank 0 of 4 running on node1

Hello world: rank 1 of 4 running on node1

Hello world: rank 2 of 4 running on node2

Hello world: rank 3 of 4 running on node2

6.2.3. Using Argument Sets
Argument sets are unique groups of arguments specific to a particular node. Combined together, the

argument sets make up a single MPI job. You can provide argument sets on the command line, or in a

configuration file. To specify a node, use the -host option.

On the command line, argument sets should be separated by a colon ':'. Global options (applied to all

argument sets) should appear first, and local options (applied only to the current argument set) should be

specified within an argument set. For example:

$ mpirun -genv I_MPI_DEBUG=2 -host node1 -n 2 ./testc : -host node2 -n 2 ./testc

Configuring Program Launch

18

In the configuration file, each argument set should appear on a new line. Global options should appear on the

first line of the file. For example:

$ cat ./config

-genv I_MPI_DEBUG=2

-host node1 -n 2 ./testc

-host node2 -n 2 ./testc

Specify the configuration file with the -configfile option:

$ mpirun -configfile config

Hello world: rank 0 of 4 running on node1

Hello world: rank 1 of 4 running on node1

Hello world: rank 2 of 4 running on node2

Hello world: rank 3 of 4 running on node2

See Also

Controlling Process Placement with the Intel® MPI Library (online article)

Job Schedulers Support

6.3. Selecting Fabrics
Intel® MPI Library enables you to select a communication fabric at runtime without having to recompile your

application. By default, it automatically selects the most appropriate fabric based on your software and

hardware configuration. This means that in most cases you do not have to bother about manually selecting a

fabric.

However, in certain situations specifying a particular communication fabric can boost performance of your

application. You can specify fabrics for communications within the node and between the nodes (intra-node

and inter-node communications, respectively). The following fabrics are available:

Fabric Network hardware and software used

shm Shared memory (for intra-node communication only).

dapl Direct Access Programming Library* (DAPL)-capable network fabrics, such as InfiniBand* and

iWarp* (through DAPL).

tcp TCP/IP-capable network fabrics, such as Ethernet and InfiniBand* (through IPoIB*).

tmi Tag Matching Interface (TMI)-capable network fabrics, such as Intel® True Scale Fabric and

Myrinet* (through TMI).

ofa OpenFabrics Alliance* (OFA)-capable network fabrics, such as InfiniBand* (through OFED*

verbs).

ofi OpenFabrics Interfaces* (OFI)-capable network fabrics, such as Intel® True Scale Fabric and

Ethernet (through OFI API).

Use the I_MPI_FABRICS environment variable to specify a fabric. Additional environment variables for

controlling fabric selection are I_MPI_FABRICS_LIST and I_MPI_FALLBACK. Their description is available in

the Developer Reference, section Tuning Reference > Fabrics Control.

See below for more information.

https://software.intel.com/en-us/articles/controlling-process-placement-with-the-intel-mpi-library

Intel® MPI Library Developer Guide for Linux* OS

19

6.3.1. Default Behavior
For intra-node communication, Intel® MPI Library uses shared memory by default. For inter-node

communication, it uses the first available fabric from the default fabric list. This list is defined automatically for

each hardware and software configuration (see I_MPI_FABRICS_LIST for details).

For most configurations, this list is as follows:

dapl,ofa,tcp,tmi,ofi

If the first fabric is unavailable, Intel® MPI Library falls back to the second fabric from the list. In case the

second fabric is unavailable, it attempts to use the next one, and so on.

To check which fabric is currently used, you can set the I_MPI_DEBUG environment variable to 2:

$ mpirun –n 4 –ppn 2 –hosts <node1>,<node2> -genv I_MPI_DEBUG=2 ./myprog

...

MPI startup(): shm and dapl data transfer modes

6.3.2. Defining Fabric List
You can redefine the default fabric list using the I_MPI_FABRICS_LIST environment variable. When you

redefine the list, other rules are unchanged: shared memory is used for intra-node communication, and the

fallback is enabled.

For example, if you run the following commands:

$ export I_MPI_FABRICS_LIST=ofi,tcp

$ mpirun –n 4 –ppn 2 –hosts <node1>,<node2> ./myprog

and the ofi fabric is unavailable, the tcp fabric is used instead.

You can disable this fallback behavior by setting the I_MPI_FALLBACK environment variable to 0:

$ export I_MPI_FALLBACK=0

In this case, if you run the application again, and the ofi fabric is still unavailable, the application will be

terminated.

To simplify definition of the fabric list, Intel® MPI Library also provides special runtime options that set

predefined fabric lists and enable (lowercase options) or disable (UPPERCASE options) the fallback behavior.

Description of these options is available in the Developer Reference, section Command Reference > Hydra

Process Manager Command > Extended Fabric Control Options.

6.3.3. Selecting Specific Fabric
You can also select a specific fabric for the intra-node and inter-node communications using the

I_MPI_FABRICS environment variable.

The variable syntax is as follows:

I_MPI_FABRICS=<fabric>|<intra-node fabric>:<inter-node fabric>

If you specify only <fabric>, it is used for both intra-node and inter-node communications.

For example, if you run the following commands:

$ export I_MPI_FABRICS=shm:tcp

$ mpirun –n 4 –ppn 2 –hosts <node1>,<node2> ./myprog

shared memory is used for communication within a node, and the tcp fabric is used for communication

between the nodes.

If you set I_MPI_FABRICS as follows:

$ export I_MPI_FABRICS=tcp

the tcp fabric used for communication within and between the nodes.

Configuring Program Launch

20

If, however, the specified fabric is unavailable, the application will be terminated. You can avoid this situation

by enabling the fallback behavior:

$ export I_MPI_FALLBACK=1

In this case, if a fabric is unavailable, the next available fabric from the fabric list (default or manually defined)

is used.

6.3.4. Advanced Fabric Control
Each of the available fabrics has its advanced parameters, which you can adjust according to your needs. The

detailed description of the environment variables controlling these parameters is available in the Developer

Reference, section Tuning Reference > Fabrics Control.

NOTE

These parameters are intended for experienced users, and under normal circumstances, you are not

recommended to adjust them manually.

21

7. Debugging
Intel® MPI Library supports the following debuggers for debugging MPI applications: GDB*, TotalView*, and

Allinea* DDT. Before using a debugger, make sure you have the application debug symbols available. To

generate debug symbols, compile your application with the -g option.

This section explains how to debug MPI applications using the listed debugger tools.

7.1. GDB*: The GNU* Project Debugger
Use the following command to launch the GDB* debugger with Intel® MPI Library:

$ mpirun -gdb -n 4 ./testc

You can work with the GDB debugger as you usually do with a single-process application. For details on how

to work with parallel programs, see the GDB documentation at http://www.gnu.org/software/gdb/.

You can also attach to a running job with:

$ mpirun -n 4 -gdba <pid>

Where <pid> is the process ID for the running MPI process.

7.2. TotalView* Debugger
Intel® MPI Library supports the use of the TotalView* debugger from Rogue Wave* Software, Inc. To debug an

MPI program, use -tv option of mpirun. For example:

$ mpirun -tv -n 4 ./testc

You will get a popup window from TotalView asking whether you want to start the job in a stopped state. Click

Yes, and the TotalView window will appear with the source code window open. Click on the main function in

the Stack Trace window (upper left) to see the source of the main function. TotalView shows that the program

(all processes) is stopped in the call to MPI_Init(). To start debugging, use buttons on the toolbar. Refer to

the TotalView documentation for more details.

7.2.1. Enabling Debug Session Restart
When using the above scenario, you need to exit TotalView to restart a debugging session. To be able to

restart the session within TotalView, use the following command line syntax:

$ totalview mpiexec.hydra -a -n <# of processes> [<other mpiexec.hydra arguments>]

<executable>

In the appeared window, verify your parameters and click OK. Start debugging with the Go button on the

toolbar. TotalView will prompt you to stop the mpiexec.hydra job. Click Yes to continue.

7.2.2. Attaching to Process
To attach to a running MPI job using TotalView, use the -tva option of mpirun when starting the job, as

follows:

$ mpirun -tva <mpiexec.hydra process ID>

Using this option adds a barrier inside MPI_Init() and hence may affect startup performance slightly. After

all tasks have returned from MPI_Init(), there is no performance degradation incurred from this option.

Debugging

22

7.2.3. Displaying Message Queue
TotalView can also display the message queue state of your MPI program. This feature is available only with

the debug (single- or multi-threaded) Intel MPI Library configuration. To view the message queue, do the

following:

1. Switch to the debug or debug_mt configuration using the mpivars.[c]sh script:

$. mpivars.sh debug_mt

2. Run your program with the -tv option:

$ mpirun -tv -n <# of processes> <executable>

3. Answer Yes to the question about stopping the mpiexec.hydra job.

4. To view the message queue, go to Tools > Message Queue.

For more details on using TotalView with MPI, see the official TotalView documentation.

7.3. DDT* Debugger
You can debug MPI applications using the Allinea* DDT* debugger. Intel does not provide support for this

debugger, you should obtain the support from Allinea*. According to the DDT documentation, DDT supports

the Express Launch feature for the Intel® MPI Library. You can debug your application as follows:

$ ddt mpirun -n <# of processes> [<other mpirun arguments>] <executable>

If you have issues with the DDT debugger, refer to the DDT documentation for help.

7.4. Using -gtool for Debugging
The -gtool runtime option can help you with debugging, when attaching to several processes at once.

Instead of attaching to each process individually, you can specify all the processes in a single command line.

For example:

$ mpirun -n 16 -gtool "gdb:3,5,7-9=attach" ./myprog

The command line above attaches the GNU* Debugger (GDB*) to processes 3, 5, 7, 8 and 9.

The -gtool option supports any debuggers including debuggers for the Intel® Xeon Phi™ coprocessors. For

the processes residing on the coprocessor, specify the @<arch> parameter (see I_MPI_PLATFORM for

available values). For example:

$ mpirun -gtool "gdb-ia:all=attach@generic; /tmp/gdb:all=attach@knc" -host

<hostname> -n 8 <host-app> :\

-host <hostname-mic0> -n 8 <mic-app>

In this example, the Intel version of GDB (gdb-ia) is launched for all <hostname> processes, while the native

GNU* Debugger for Intel® Xeon Phi™ coprocessor is applied to all processes residing on the coprocessor. The

value generic stands for all platforms except for the Intel® MIC Architecture.

See Also

Intel® Many Integrated Core Architecture Support

Intel® MPI Library Developer Reference, section Miscellaneous > Other Environment Variables >

I_MPI_PLATFORM

Intel® MPI Library Developer Reference, section Command Reference > Hydra Process Manager Command >

Global Options > gtool Options

23

8. Statistics and Analysis
Intel® MPI Library provides a variety of options for analyzing MPI applications. Some of these options are

available within the Intel MPI Library, while some require additional analysis tools. For such tools, Intel MPI

Library provides compilation and runtime options and environment variables for easier interoperability.

8.1. Getting Debug Information
The I_MPI_DEBUG environment variable provides a convenient way to get detailed information about an MPI

application at runtime. You can set the variable value from 0 (the default value) to 1000. The higher the value,

the more debug information you get. For example:

$ mpirun -genv I_MPI_DEBUG=2 -n 2 ./testc

[0] MPI startup(): Multi-threaded optimized library

[0] MPI startup(): shm data transfer mode

[1] MPI startup(): shm data transfer mode

[1] MPI startup(): Internal info: pinning initialization was done

[0] MPI startup(): Internal info: pinning initialization was done

...

NOTE

High values of I_MPI_DEBUG can output a lot of information and significantly reduce performance of your

application. A value of I_MPI_DEBUG=5 is generally a good starting point, which provides sufficient

information to find common errors.

By default, each printed line contains the MPI rank number and the message. You can also print additional

information in front of each message, like process ID, time, host name and other information, or exclude some

information printed by default. You can do this in two ways:

 Add the '+' sign in front of the debug level number. In this case, each line is prefixed by the string

<rank>#<pid>@<hostname>. For example:

$ mpirun -genv I_MPI_DEBUG=+2 -n 2 ./testc

[0#3520@clusternode1] MPI startup(): Multi-threaded optimized library

...

To exclude any information printed in front of the message, add the '-' sign in a similar manner.

 Add the appropriate flag after the debug level number to include or exclude some information. For

example, to include time but exclude the rank number:

$ mpirun -genv I_MPI_DEBUG=2,time,norank -n 2 ./testc

11:59:59 MPI startup(): Multi-threaded optimized library

...

For the list of all available flags, see description of I_MPI_DEBUG in the Developer Reference.

To redirect the debug information output from stdout to stderr or a text file, use the

I_MPI_DEBUG_OUTPUT environment variable:

$ mpirun -genv I_MPI_DEBUG=2 -genv I_MPI_DEBUG_OUTPUT=/tmp/debug_output.txt -n 2

./testc

Note that the output file name should not be longer than 256 symbols.

See Also

Intel® MPI Library Developer Reference, section Miscellaneous > Other Environment Variables > I_MPI_DEBUG

Statistics and Analysis

24

8.2. Gathering Statistics
Intel® MPI Library has a built-in statistics gathering facility that collects essential performance data without

disturbing the application execution. You do not need to modify the source code or relink your application to

collect this information. The statistics information is stored in a text file and has a human-readable format.

There are two types of statistics that the Intel MPI Library can collect:

 Native statistics

 IPM statistics

You can also collect both types of statistics simultaneously. To enable statistics collection, use the

I_MPI_STATS environment variable for either of the types. There are also additional variables and MPI

functions that help you customize the statistics collection. See below for details.

8.2.1. Native Statistics
Native statistics provides detailed information about the application, which includes information about data

transfers, point-to-point and collective operations on a rank-by-rank basis.

To enable the native statistics collection, set the I_MPI_STATS environment variable to a numeric value to

specify the level of detail. The available values are 1, 2, 3, 4, 10 or 20. For example:

$ export I_MPI_STATS=10

You can also specify a range of levels to collect information only on those levels. For example:

$ export I_MPI_STATS=4-10

After running the application, you will get a stats.txt file containing the statistics. To change the output file

name, use the I_MPI_STATS_FILE variable:

$ export I_MPI_STATS_FILE=stats_initial.txt

You can limit the amount of output information by collecting information for specific MPI operations or

operation types. To do so, use the I_MPI_STATS_SCOPE variable. For collective and point-to-point

operations, use the p2p and coll values, respectively. For specific operations, use their names without the

MPI_ prefix. By default, statistics are collected for all MPI operations. For the full list of supported operations,

see the Developer Reference.

For example, to collect statistics for MPI_Bcast, MPI_Reduce, and all point-to-point operations:

$ export I_MPI_STATS=20

$ export I_MPI_STATS_SCOPE="p2p;coll:bcast,reduce"

Use the I_MPI_STATS_BUCKETS environment variable to collect statistics for specific ranges of message

sizes and communicator sizes. For example, to specify short messages (from 0 to 1000 bytes) and long

messages (from 50000 to 100000 bytes), use the following setting:

$ export I_MPI_STATS_BUCKETS=0-1000,50000-100000

To specify messages that have 16 bytes in size and circulate within four process communicators, use the

following setting:

$ export I_MPI_STATS_BUCKETS="16@4"

8.2.2. IPM Statistics
Intel® MPI Library also provides the integrated performance monitoring (IPM) statistics format, which provides

similar information about the application and has two levels of detail. This information, however, is less

detailed overall than the native statistics, but it is considered more portable.

To enable the IPM statistics collection, set I_MPI_STATS to ipm:terse for a brief summary or to ipm for

complete statistics information. For example:

Intel® MPI Library Developer Guide for Linux* OS

25

$ export I_MPI_STATS=ipm

After running the application, the statistics are saved in the stats.ipm file. Use the I_MPI_STATS_FILE

variable to change the output file name.

In the IPM statistics mode, the I_MPI_STATS_SCOPE variable has an extended list of values. For the full list of

available values and its descriptions, see the Developer Reference.

The IPM statistics mode also provides the I_MPI_STATS_ACCURACY environment variable to reduce the

statistics output. Set the variable to collect data only on those MPI functions that take the specified portion of

the total time spent inside all MPI calls (in percent). For example, to skip all operations that are run less than

3% of all time:

$ export I_MPI_STATS=ipm

$ export I_MPI_STATS_ACCURACY=3

8.2.3. Native and IPM Statistics
It is also possible to collect both types of statistics simultaneously. To collect statistics in all formats with the

maximal level of details, use the I_MPI_STATS environment variable as follows:

$ export I_MPI_STATS=all

NOTE

The I_MPI_STATS_SCOPE environment variable is not applicable when both types of statistics are collected.

The value all corresponds to I_MPI_STATS=native:20,ipm. To control the amount of statistics

information, use the ordinary I_MPI_STATS values, separated by commas:

$ export I_MPI_STATS=native:2-10,ipm:terse

8.2.4. Region Control with MPI_Pcontrol
You can mark regions of code to collect statistics specifically for those regions.

To open a region, use the MPI_Pcontrol(1, <name>) function call. To close a region, use the

MPI_Pcontrol(-1, <name>) function call. The <name> function argument is a string with the region name.

For example:

...

/* open "reduce" region for all processes */

MPI_Pcontrol(1, "reduce");

for (i = 0; i < 1000; i++)

 MPI_Reduce(&nsend, &nrecv, 1, MPI_INT, MPI_MAX, 0, MPI_COMM_WORLD);

/* close "reduce" region */

MPI_Pcontrol(-1, "reduce");

...

For the native statistics type, statistics for the region is saved in a separate file stats_<name>.txt. In the IPM

statistics mode, it is marked appropriately in the output file:

...

region : reduce [ntasks] = 4

...

Code regions can be:

 Discontiguous (opened and closed multiple times)

 Intersected

 Covering a subset of MPI processes (in the MPI_COMM_WORLD communicator)

Statistics and Analysis

26

Each region contains its own independent statistics information about MPI functions called inside the region.

All open regions are closed automatically inside the MPI_Finalize function call.

The MPI_Pcontrol function cannot be used for the following permanent regions:

 Main region – contains statistics information about all MPI calls from MPI_Init to MPI_Finalize.

The main region gets the "*" name in the IPM statistics output. The native statistics output for this

region is stats.txt by default.

 Complementary region – contains statistics information not included into any named region. The

region gets the "ipm_noregion" name in the IPM statistics output. The default output file for this

region is stats_noregion.txt for the native statistics format.

If named regions are not used, the main and complementary regions are identical, and the complementary

region is ignored.

See Also

Intel® MPI Library Developer Reference, section Miscellaneous > Statistics Gathering Mode

8.3. Tracing and Correctness Checking
Intel® MPI Library provides tight integration with the Intel® Trace Analyzer and Collector, which enables you to

analyze MPI applications and find errors in them. Intel® MPI Library has several compile- and runtime options

to simplify the application analysis.

Intel® Trace Analyzer and Collector is available as part of the Intel® Parallel Studio XE Cluster Edition. Before

proceeding to the next steps, make sure you have this product installed.

8.3.1. High-Level Performance Analysis
For a high-level application analysis, Intel Trace Analyzer and Collector provides a lightweight analysis tool

MPI Performance Snapshot, which is also integrated with the Intel MPI Library. The tool provides general

information about the application, such as MPI and OpenMP* utilization time and load balance, MPI operations

usage, memory and disk usage, and other information. This information enables you to get a general idea

about the application performance and identify spots for a more thorough analysis.

Follow these steps to analyze an application with the MPI Performance Snapshot:

1. Set up the environment for the compiler, Intel MPI Library and MPI Performance Snapshot:

$ source <installdir>/bin/compilervars.sh intel64

$ source <installdir>/bin/mpivars.sh

$ source <installdir>/bin/mpsvars.sh

2. Run your application with the -mps option:

$ mpirun -mps -n 4 ./myprog

MPI Performance Snapshot generates a directory with the statistics files stat_<date>-<time>.

3. Launch the mps tool and pass the generated statistics to the tool:

$ mps ./stat_<date>-<time>

You will see the analysis results printed in the console window. Also, MPI Performance Snapshot will

generate an HTML report mps_report.html containing the same information.

For more details, refer to the MPI Performance Snapshot User's Guide.

Intel® MPI Library Developer Guide for Linux* OS

27

8.3.2. Tracing Applications
To analyze an application with the Intel Trace Analyzer and Collector, first you need generate a trace file of

your application, and then open this file in Intel® Trace Analyzer to analyze communication patterns, time

utilization, etc. Tracing is performed by preloading the Intel® Trace Collector profiling library at runtime, which

intercepts all MPI calls and generates a trace file. Intel MPI Library provides the -trace (-t) option to simplify

this process.

Complete the following steps:

1. Set up the environment for the Intel MPI Library and Intel Trace Analyzer and Collector:

$ source <installdir>/bin/mpivars.sh

$ source <installdir>/bin/itacvars.sh

2. Trace your application with the Intel Trace Collector:

$ mpirun -trace -n 4 ./myprog

As a result, a trace file .stf is generated. For the example above, it is myprog.stf.

3. Analyze the application with the Intel Trace Analyzer:

$ traceanalyzer ./myprog.stf &

The workflow above is the most common scenario of tracing with the Intel Trace Collector. For other tracing

scenarios, see the Intel Trace Collector documentation.

8.3.3. Checking Correctness
Apart from regular tracing, Intel Trace Analyzer and Collector provides the correctness checking capability,

which helps you detect errors with data types, buffers, communicators, point-to-point messages and collective

operations, detect deadlocks, or data corruption.

To enable correctness checking, use the -check_mpi runtime option. If errors are detected, they are printed

in the console output. To map errors to the source code, make sure you have the debug information available

(-g compiler option). For example:

$ mpirun -check_mpi -n 4 ./myprog

...

[0] ERROR: GLOBAL:COLLECTIVE:DATATYPE:MISMATCH: error

...

For details on configuring error detection, refer to the Intel Trace Collector documentation.

See Also

MPI Performance Snapshot User's Guide

Intel® Trace Collector User and Reference Guide

Tutorial: Detecting and Resolving Errors with MPI Correctness Checker

8.4. Interoperability with Other Tools
To simplify interoperability with other analysis tools, Intel® MPI Library provides the -gtool option and the

I_MPI_GTOOL environment variable. The option and the variable are equivalent but the option has higher

priority. By using the -gtool option you can analyze specific MPI processes with such tools as Intel® VTune™

Amplifier XE, Intel® Advisor, Valgrind* and others through the mpiexec.hydra or mpirun commands.

For example, to analyze processes 3, 5, 6, and 7 with the VTune Amplifier, you can use the following command

line:

$ mpirun -n 8 -gtool "amplxe-cl -collect hotspots -r result:3,5-7" ./myprog

https://software.intel.com/en-us/mpi-perf-snapshot-user-guide-pdf
https://software.intel.com/en-us/itc-user-and-reference-guide
https://software.intel.com/en-us/itac-correctness-checking-tutorial

Statistics and Analysis

28

The -gtool option also provides several methods for finer process selection. For example, you can easily

analyze only one process on each host, using the exclusive launch mode:

$ mpirun -n 8 -ppn 4 -hosts node1,node2 -gtool "amplxe-cl -collect hotspots -r

result:all=exclusive" ./myprog

Besides, you can select processes by the architecture of the processor they are residing on:

$ mpirun -n 4 -host node1 -gtool "amplxe-cl -collect hotspots -r result:all@knc"

./myprog :\

-n 4 -host node1-mic0 ./myprog-mic

See I_MPI_PLATFORM for the available architectures.

For more advanced examples, see the -gtool option description in the Developer Reference.

See Also

Intel® MPI Library Developer Reference, section Miscellaneous > Other Environment Variables >

I_MPI_PLATFORM

Intel® MPI Library Developer Reference, section Command Reference > Hydra Process Manager Command >

Global Options > gtool Options

29

9. Tuning with mpitune Utility
Besides the standard capabilities for compiling and running MPI applications, Intel® MPI Library provides an

automatic utility for optimizing Intel MPI Library parameters for a particular cluster or application. This utility is

called mpitune and is available in the <installdir>/bin directory.

Intel® MPI Library has a wide variety of parameters affecting application performance. The defaults for those

parameters are set for common usage and generally provide good performance for most clusters and

applications out of the box. However, to achieve the best performance for your particular cluster or

application, you can use the mpitune utility to adjust the parameters. Note that if performance improvement

is insignificant after adjusting a certain parameter, mpitune can keep its default value.

The following operation modes are available in mpitune:

 Cluster specific. In this mode, mpitune evaluates a given cluster environment by running a

benchmarking program to find the most optimal settings. Intel® MPI Benchmarks are used by default.

 Application specific. In this mode, mpitune evaluates performance of a given MPI application by

running the actual application.

o Fast application specific. A faster application specific mode. Less accurate than the previous, but

more suitable in certain cases.

o Topology-aware rank placement optimization. In this mode, mpitune evaluates cluster

characteristics and rank-to-rank data transfers in an MPI application to identify the optimal rank

placement.

The general workflow for all modes is as follows:

1. Generate a configuration file containing the optimal settings for the cluster or application.

2. Apply the settings during the application launch.

See the information below for details. For advanced usage scenarios, see the related online tutorial.

9.1. Cluster Specific Tuning
The cluster specific mode is intended for tuning Intel® MPI Library for a specific cluster. For finding optimal

settings, mpitune uses a benchmarking program: it runs tests several times with different parameters and

searches for the best ones. By default, Intel® MPI Benchmarks are used.

To tune Intel MPI Library in the cluster specific mode, do the following:

1. Start the tuning process on a cluster, run the mpitune command. Use the --hostfile (-hf) option

to specify the host file. Otherwise, the local host is used.

$ mpitune -hf hosts

As a result, a configuration file with the optimized Intel MPI Library settings is created in the

<installdir>/<arch>/etc directory. If you do not have write permissions for this directory, the file

is created in the current location.

To save the file to an alternative directory, use the --output-directory-results (-odr) option:

$ mpitune -hf hosts -odr <results_directory>

2. Run your application with the -tune option to apply the tuned settings:

$ mpirun -tune -genv I_MPI_FABRICS=<value> -ppn 8 -n 64 ./myprog

If you generated results in a non-default directory, pass this directory name to the -tune option:

https://software.intel.com/en-us/mpi-tuner-tutorial-lin

Tuning with mpitune Utility

30

$ mpirun -tune <results_directory> -genv I_MPI_FABRICS=<value> -ppn 8 -n 64

./myprog

NOTE

When you use the -tune option, explicitly specify the fabric, the number of processes per node, and the total

number of processes, as shown in the examples above. This makes the Intel® MPI Library pick up the

appropriate configuration file.

Alternatively, you can pass a specific configuration file to -tune, for example:

$ mpirun -tune <path_to_your_config_file>/mpitune_config.conf

9.1.1. Reducing Tuning Time
A standard tuning procedure may take a considerable amount of time and it may be reasonable to limit its

execution. There are a few options that help you reduce cluster tuning time.

To do that, you need to know about the most common MPI workloads on your cluster and perform tuning

specifically for those. The following information can help you reduce the amount of adjustments made by

mpitune and hence the tuning time:

 Fabrics used

 Number of hosts typically used

 Numbers of ranks per host

 Common message sizes

Tuning for Specific Fabrics

Use the --fabric-list (-fl) option. Use values from I_MPI_FABRICS as arguments. Use commas to

separate different fabrics:

$ mpitune -fl shm:dapl,ofa <other options>

mpitune creates configuration files for the specified fabrics (fabric combinations). By default, all fabrics from

<installdir>/<arch>/etc/fabrics.xml are tested.

Tuning for Specific Host Ranges

Assume the majority of workloads on the cluster use between 4 and 16 nodes. In this case, you may want to

create tuned settings only for those numbers. To do so, use the --host-range (-hr) option:

$ mpitune -hr 4:16 <other options>

mpitune creates configuration files for workloads using 4, 8, and 16 nodes (mpitune tests only the values

that are powers of two in the specified range). The default minimum is 1, and the default maximum is the

number of hosts specified in the host file.

For this option and the options below, you can specify only the minimum or the maximum value as follows:

min: or :max. In this case, the default value is used for the other bound.

Tuning for Specific Ranks per Host

Use the --perhost-range (-pr) option:

$ mpitune -pr 4:16 <other options>

Similarly, mpitune creates configuration files for workloads running 4, 8, and 16 processes per host. The

default minimum is 1, and the default maximum is the number of cores.

Intel® MPI Library Developer Guide for Linux* OS

31

Tuning for Specific Message Sizes

Use the --message-range (-mr) option. You can specify message sizes in the following formats: 1024

(bytes), 2kb, 4mb, or 8gb. For example:

$ mpitune -mr 64kb:1mb <other options>

mpitune creates configuration files for messages within the specified range (for each value that is a power of

two in the range). The default range is 0:4mb.

See Also

Selecting Fabrics

9.1.2. Replacing Default Benchmarks
To replace the default Intel® MPI Benchmarks, use the --test (-t) option with the benchmark of your choice:

$ mpitune --test \"your_benchmark -param1 -param2\"

You can then perform tuning as described above.

Note that Intel® MPI Benchmarks are more optimized for Intel microprocessors. This may result in different

tuning settings on Intel and non-Intel microprocessors.

9.2. Application Specific Tuning
In the application specific mode, you can find optimal Intel® MPI Library settings for your specific application.

To enable this mode, use the --application (-a) option of mpitune. The option takes the full program

launch command as an argument. The general syntax is as follows:

$ mpitune --application \"mpirun <arguments> <executable>\" --output-file

<config_file>.conf

After launching the command, mpitune performs tuning and saves the optimized settings in the

<config_file>.conf file.

To apply the optimized settings, run your application and pass the generated .conf file to the -tune option.

For example:

$ mpirun -tune mpitune_config.conf -ppn 8 -n 64 ./myprog

9.2.1. Fast Application Specific Mode
In addition to the application specific mode, mpitune provides its faster alternative, which performs tuning of

collective operations. This type of tuning may produce less accurate results but it can speedup applications

with non-typical patterns, such as non-typical rank placement per host or communicator, unusual messages

sizes, and so on. This mode supports only regular collective operations that have related environment

variables in the I_MPI_ADJUST family (except for the KN_RADIX subset and

I_MPI_ADJUST_REDUCE_SEGMENT). See the Intel® MPI Library Developer Reference for details.

To enable the fast application specific mode, use the --fast (-f) and --application (-a) options. Use the

--out option to specify the output file:

$ mpitune --fast --application \"mpirun <arguments> <executable>\" --out

<config_file>.conf

This mode uses the internal Intel MPI Library statistics as input. If you have a generated statistics file for your

application, you can pass it directly to mpitune. Use the --file option:

$ mpitune --fast --file stats.txt --out <config_file>.conf

This can help reduce the tuning time.

Tuning with mpitune Utility

32

TIP

To see other options available in this mode, use the --fast and --help options together.

To apply the resulting settings, use the -tune option as described above.

9.2.2. Topology-Aware Rank Placement Optimization
In this mode, mpitune finds the most optimal placement of MPI ranks on the cluster to minimize network

traffic. It takes into account the network topology and rank-to-rank data transfers. To enable this mode, use

the --rank-placement (-rp) option.

This mode uses a host file as input. In the host file, a specific cluster node should be specified as many times

as many processes are run on it. For example, for two nodes with two processes on each, the host file should

look as follows:

$ cat ./hostfile.in

node1

node1

node2

node2

To pass the host file to mpitune, use the --hostfile-in (-hi) option. For getting tuning results, mpitune

provides two options: a standard configuration file (--config-out option) or an optimized host file (--

hostfile-out or -ho option). You can use either of the options.

Using Configuration File

Do the following:

1. Perform tuning for your application and save results in a configuration file. An example command line

may look as follows:

$ mpitune --rank-placement --application \"mpirun -n 32 ./myprog"\ --

hostfile-in hostfile.in --config-out ./myprog.conf

2. Apply the tuned settings to your application:

$ mpirun -tune ./myprog.conf -n 32 ./myprog

Using Optimized Host File

Do the following:

1. Perform tuning for your application and save results in a host file. An example command line may look

as follows:

$ mpitune --rank-placement --application \"mpirun -n 32 ./myprog"\ --

hostfile-in hostfile.in --hostfile-out ./hostfile.out

2. Use the optimized host file for your application launch. Use the -machinefile option:

$ mpirun -machinefile ./hostfile.out -n 32 ./myprog

TIP

To see other options available in this mode, use the --rank-placement and --help options together.

Reducing Tuning Time

When you perform this type of tuning, mpitune generates three files, which it uses as input:

Intel® MPI Library Developer Guide for Linux* OS

33

 Intel MPI Library statistics file

 Application communication graph (ACG) file

 Hardware topology graph (HTG) file

The files are saved into a temporary directory. Their exact location and names are printed in the console

output when you start tuning:

Statistics collecting... done: <statistics file location>

Application communication graph initialization... done: <ACG file location>

Hardware topology initialization... done: <HTG file location>

To speedup future tuning sessions, you can skip generation of these files and use the files from the previous

tuning session. Use the -s, -acg, and -htg options to pass the statistics file, ACG and HTG files, respectively.

NOTE

Specifying a statistics file or an ACG file requires that you also specify a host file (--hostfile-in or -hi

option) or an HTG file.

Specifying an HTG file requires that you also specify one of the following: an ACG file, an application command

line (--application or -a option), or a statistics file.

For example, to use a previously generated ACG file:

$ mpitune -rp -acg acg.txt -hi hosts.in

To use a previously generated HTG file:

$ mpitune -rp -htg htg.txt -s stats.txt

See Also

Intel® MPI Library Developer Reference, section Tuning Reference > Collective Operation Control

Intel® MPI Library Developer Reference, section Tuning Reference > mpitune Utility > mpitune Environment

Variables

9.3. General mpitune Capabilities
To get an idea about all mpitune capabilities, you can review its options, which are available by specifying the

--help (-h) option:

$ mpitune --help

NOTE

Executing mpitune without arguments initiates the tuning process. To print help, you need to use the --help

(-h) option.

The full list of mpitune options and related environment variables is also available in the Intel® MPI Library

Developer Reference.

Some specific scenarios of using mpitune options are given below.

9.3.1. Displaying Tasks Involved
Before performing actual tuning, you may want to know which tasks exactly the tuning process involves. For

that purpose, you can use the --scheduler-only (-so) option:

$ mpitune -so

Tuning with mpitune Utility

34

9.3.2. Enabling Silent Mode
During the tuning process, mpitune produces a lot of output in stdout. To suppress all diagnostics shown by

the tool, use the --silent (-s) option:

$ mpitune -s <other options>

9.3.3. Setting Time Limit
The process of tuning can take a lot of time. Due to the varying factors involved in each cluster and application

setup, the tuning time can be unpredictable.

To restrict the tuning time, you can set the --time-limit (-tl) option. This option takes a number of

minutes as an argument. For example, to limit tuning to 8 hours (480 minutes), run the following command:

$ mpitune --time-limit 480 <other options>

9.3.4. Improving Accuracy of Results
In the case of tuning an application that has significant run-to-run performance variation, mpitune might not

be able to select the best parameters due to a small number of test iterations. By default, this number is 3. To

improve accuracy of resulting settings, increase the number of iterations for each test run, use the --

iterations (-i) option:

$ mpitune --iterations 10 <other options>

9.4. Tuning Applications Manually
Intel® MPI Library provides a family of I_MPI_ADJUST_* environment variables that allow you to manually

tune collective MPI operations. By setting a range of message sizes and choosing different algorithms, you can

improve performance of your application. For more information, see the Intel® MPI Library Developer

Reference, section Tuning Reference > Collective Operations Control.

35

10. Intel® Many Integrated Core Architecture
Support
Intel® MPI Library provides full support for processors based on the Intel® Many Integrated Core (Intel® MIC)

Architecture. Using the Intel® MPI Library with an Intel® Xeon Phi™ card is similar to using another node, but

there are a few special considerations, which are discussed in this section.

NOTE

Information in this section applies only to the Intel® Xeon Phi™ processors code named Knights Corner. For

newer Intel® Xeon Phi™ generations, use the standard usage workflow.

10.1. Prerequisites
Complete the following prerequisite steps to start with the Intel MPI Library on Intel MIC Architecture:

1. Make sure the Intel® Manycore Platform Software Stack (Intel® MPSS) is installed and configured on

your heterogeneous system.

2. Make sure the passwordless SSH connection is established between the Intel Xeon host and the Intel

Xeon Phi coprocessor.

3. Set up the Intel MPI Library environment on the host:

(host)$ source <installdir>/bin/mpivars.sh

4. The Intel® MIC Architecture uses different binaries and libraries, and they must be present on the card

or accessible via an NFS share.

To copy the appropriate files to the card, you can use the following commands:

(host)$ scp <installdir>/mic/bin/* mic0:/bin/

(host)$ scp <installdir>/mic/lib/* mic0:/lib64/

This assumes that the host name of the card is mic0. You can copy any additional libraries needed by

the application in a similar manner.

Alternatively, set up an NFS share between the host and the coprocessor, so that the Intel MPI Library

installation directory is accessible from both. This saves up the RAM space on the coprocessor. For

instructions, see the Intel MPSS User's Guide.

After completing these steps, you can proceed to building and running applications.

10.2. Building MPI Applications
(SDK only)

The Intel Xeon host and Intel Xeon Phi coprocessor are based on different architectures. Hence, you need to

build different binaries for each. Follow these steps:

1. If you have not done that, set up the environment for the compiler and for the Intel® MPI Library:

(host)$ source <installdir>/compilers_and_libraries/linux/bin/compilervars.sh

intel64

(host)$ source

<installdir>/compilers_and_libraries/linux/mpi/intel64/bin/mpivars.sh

Intel® Many Integrated Core Architecture Support

36

For the GCC* compiler, make sure it is in your PATH.

2. Build your application for the Intel® Xeon Phi™ coprocessor. When using the Intel® compilers, specify

the -mmic option:

(host)$ mpiicc -mmic myprog.c -o myprog.mic

When using GCC*, you need to specify the GCC cross-compiler:

(host)$ mpicc -cc=/usr/linux-k1om-4.7/bin/x86_64-k1om-linux-gcc myprog.c -o

myprog.mic

For the Intel Xeon Phi executable, the .mic extension is used to differentiate it from the host

executable.

3. Build your application for the Intel® 64 architecture:

(host)$ mpiicc myprog.c -o myprog

10.3. Running MPI Applications
You can use the Intel® MPI Library with the Intel® Xeon Phi™ coprocessors in three major ways:

 Native model. In this model, all MPI ranks are run on the Intel Xeon Phi coprocessor card.

 Symmetric model. In this model, MPI ranks are run on both the Intel® Xeon® host and the Intel Xeon

Phi coprocessor card, simultaneously.

 Offload model. In this model, MPI ranks are run on the main Intel Xeon host, and the application

utilizes offload directives to run on the Intel Xeon Phi coprocessor card.

This section discusses primarily the first two models. For detailed instructions on using the offload model,

refer to the Intel® MPSS User's Guide and the Intel® compiler documentation.

To run an MPI application on the Intel Xeon host and the Intel Xeon Phi coprocessor, do the following:

1. Copy the executable compiled for the Intel Xeon Phi coprocessor to the card:

(host)$ scp myprog.mic mic0:~/

Alternatively, make sure it is accessible from the card via an NFS share.

2. Use the I_MPI_MIC_POSTFIX environment variable for the Intel MPI Library to append the .mic

postfix when running on the Intel® Xeon Phi™ coprocessor:

$ export I_MPI_MIC_POSTFIX=.mic

This allows you to specify the executable without the .mic extension during the launch.

You can set a prefix in a similar way, using the I_MPI_MIC_PREFIX variable. A prefix may be a folder

as well.

3. Enable the Intel Xeon Phi coprocessor recognition by the Intel MPI Library. Set the I_MPI_MIC

environment variable:

$ export I_MPI_MIC=enable

4. Launch the application on the Intel Xeon host and/or the Intel Xeon Phi coprocessor:

o To run natively on the coprocessor only:

(host)$ mpirun -n 2 -host mic0 ~/myprog

This assumes that the host name of the card is mic0.

o To run symmetrically on the host and the coprocessor:

(host)$ mpirun -n 4 -ppn 2 -hosts node0,mic0 ~/myprog

Intel® MPI Library Developer Guide for Linux* OS

37

This assumes that node0 is the local host and mic0 is the coprocessor. In this example, the host

and the card are specified with the -hosts option. For alternatives, see Controlling Process

Placement.

5. When running the application, make sure paths to the executable match on all hosts and coprocessor

cards involved.

See Also

Intel® MPI Library Developer Reference, section Miscellaneous > Intel® Many Integrated Core Architecture

Support

Intel® MIC Architecture Developer Community

Intel® MPSS Web Page

http://software.intel.com/en-us/mic-developer
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

38

11. Troubleshooting
This section provides the following troubleshooting information:

 General Intel® MPI Library troubleshooting procedures

 Typical MPI failures with corresponding output messages and behavior when a failure occurs

 Recommendations on potential root causes and solutions

11.1. General Troubleshooting Procedures
If you encounter errors or failures when using Intel® MPI Library, take the following general troubleshooting

steps:

1. Check the System Requirements section and the Known Issues section in the Intel® MPI Library Release

Notes.

2. Check accessibility of the hosts. Run a simple non-MPI application (for example, the hostname utility)

on the problem hosts using mpirun. For example:

$ mpirun -ppn 1 -n 2 -hosts node01,node02 hostname

node01

node02

This may help reveal an environmental problem (such as, the MPI remote access mechanism is not

configured properly), or a connectivity problem (such as, unreachable hosts).

3. Run the MPI application with debug information enabled: set the environment variables

I_MPI_DEBUG=6 and/or I_MPI_HYDRA_DEBUG=on. Increase the integer value of debug level to get

more information. This action helps narrow down to the problematic component.

4. If you have the availability, download and install the latest version of Intel MPI Library from the official

product page and check if your problem persists.

5. If the problem still persists, you can submit a ticket via Intel® Premier Support.

11.2. Examples of MPI Failures
This section provides examples of typical MPI failures including descriptions, output messages, and related

recommendations. The following problems which may cause MPI failures are discussed in this section:

 Communication problems

 Environmental problems

 Other problems

11.2.1. Communication Problems
Communication problems with the Intel® MPI Library are usually caused by a signal termination (SIGTERM,

SIGKILL, or other signals). Such terminations may be due to a host reboot, receiving an unexpected signal,

out-of-memory (OOM) manager errors and others.

To deal with such failures, you need to find out the reason for the MPI process termination (for example, by

checking the system log files).

https://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/intel-mpi-library
http://premier.intel.com/

Intel® MPI Library Developer Guide for Linux* OS

39

Example 1

Symptom/Error Message

[50:node02] unexpected disconnect completion event from [41:node01]

and/or

==

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= PID 20066 RUNNING AT node01

= EXIT CODE: 15

= CLEANING UP REMAINING PROCESSES

= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES

==

The exact node and the MPI process reported in the table may not reflect the one where the initial failure had

occurred.

Cause

One of MPI processes is terminated by a signal (for example, SIGTERM or SIGKILL) on node01. The MPI

application was run over the dapl fabric.

Solution

Try to find out the reason of the MPI process termination. This may be a host reboot, receiving an unexpected

signal, OOM manager errors and others. Check the system log files.

Example 2

Symptom/Error Message

rank = 26, revents = 25, state = 8

Assertion failed in file ../../src/mpid/ch3/channels/nemesis/netmod/tcp/socksm.c

at line 2969: (it_plfd->revents & POLLERR) == 0

internal ABORT - process 25

Fatal error in PMPI_Alltoall: A process has failed, error stack:

PMPI_Alltoall(1062).......: MPI_Alltoall(sbuf=0x9dd7d0, scount=64, MPI_BYTE,

rbuf=0x9dc7b0,

rcount=64, MPI_BYTE, comm=0x84000000) failed

MPIR_Alltoall_impl(860)...:

MPIR_Alltoall(819)........:

MPIR_Alltoall_intra(360)..:

dequeue_and_set_error(917): Communication error with rank 2rank = 45, revents = 25,

state = 8

Assertion failed in file ../../src/mpid/ch3/channels/nemesis/netmod/tcp/socksm.c

at line 2969: (it_plfd->revents & POLLERR) == 0

internal ABORT - process 84

...

Fatal error in PMPI_Alltoall: A process has failed, error stack:

PMPI_Alltoall(1062).......: MPI_Alltoall(sbuf=MPI_IN_PLACE, scount=-1,

MPI_DATATYPE_NULL,

rbuf=0x2ba2922b4010, rcount=8192, MPI_INT, MPI_COMM_WORLD) failed

MPIR_Alltoall_impl(860)...:

MPIR_Alltoall(819)........:

MPIR_Alltoall_intra(265)..:

MPIC_Sendrecv_replace(658):

dequeue_and_set_error(917): Communication error with rank 84

...

and/or:

Troubleshooting

40

==

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= PID 21686 RUNNING AT node01

= EXIT CODE: 15

= CLEANING UP REMAINING PROCESSES

= YOU CAN IGNORE THE BELOW CLEANUP MESSAGES

==

The exact node and the MPI process reported in the table may not reflect the one where the initial failure had

occurred.

Cause

One of MPI processes is terminated by a signal (for example, SIGTERM or SIGKILL) . The MPI application was

run over the tcp fabric. In such cases, hang of the MPI application is possible.

Solution

Try to find out the reason of the MPI process termination. This may be a host reboot, receiving an unexpected

signal, OOM manager errors and others. Check the system log files.

Example 3

Symptom/Error Message

[mpiexec@node00] control_cb (../../pm/pmiserv/pmiserv_cb.c:773): connection to

proxy

1 at host node01 failed

[mpiexec@node00] HYDT_dmxu_poll_wait_for_event (../../tools/demux/demux_poll.c:76):

callback returned error status

[mpiexec@node00] HYD_pmci_wait_for_completion

(../../pm/pmiserv/pmiserv_pmci.c:501):

error waiting for event

[mpiexec@node00] main (../../ui/mpich/mpiexec.c:1063): process manager error

waiting

for completion

Cause

The remote pmi_proxy process is terminated by the SIGKILL (9) signal on node01.

Solution

Try to find out the reason of the pmi_proxy process termination. This may be a host reboot, receiving an

unexpected signal, OOM manager errors and others. Check the system log files.

Example 4

Symptom/Error Message

Failed to connect to host node01 port 22: No route to host

Cause

One of the MPI compute nodes (node01) is not available on the network. In such cases, hang of the MPI

application is possible.

Solution

Check the network interfaces on the nodes and make sure the host is accessible.

Intel® MPI Library Developer Guide for Linux* OS

41

Example 5

Symptom/Error Message

Failed to connect to host node01 port 22: Connection refused

Cause

The MPI remote node access mechanism is SSH. The SSH service is not running on node01.

Solution

Check the state of the SSH service on the nodes.

11.2.2. Environment Problems
Environmental errors may happen when there are problems with the system environment, such as mandatory

system services are not running, shared resources are unavailable and so on.

When you encounter environmental errors, check the environment. For example, verify the current state of

important services.

Example 1

Symptom/Error Message

librdmacm: Warning: couldn't read ABI version.

librdmacm: Warning: assuming: 4

librdmacm: Fatal: unable to get RDMA device list

or:

CMA: unable to get RDMA device list

librdmacm: couldn't read ABI version.

librdmacm: assuming: 4

Cause

The OFED* stack is not loaded. The application was run over the dapl fabric. In such cases, hang of the MPI

application is possible.

Solution

See the OFED* documentation for details about OFED* stack usage.

Example 2

Symptom/Error Message

[0] MPI startup(): Multi-threaded optimized library

[1] DAPL startup(): trying to open DAPL provider from I_MPI_DAPL_PROVIDER: ofa-v2-

mlx4_0-1

[0] DAPL startup(): trying to open DAPL provider from I_MPI_DAPL_PROVIDER: ofa-v2-

mlx4_0-1

[1] MPI startup(): DAPL provider ofa-v2-mlx4_0-1

[1] MPI startup(): dapl data transfer mode

[0] MPI startup(): DAPL provider ofa-v2-mlx4_0-1

[0] MPI startup(): dapl data transfer mode

In such cases, hang of the MPI application is possible.

Troubleshooting

42

Cause

The Subnet Manager (opensmd*) service is not running. The application was run over the dapl fabric. The

following output is provided when you set I_MPI_DEBUG=2.

Solution

Check the current status of the service. See the OFED* documentation for details on opensmd* usage.

Example 3

Symptom/Error Message

node01-mic0:MCM:2b66:e56a0b40: 2379 us(2379 us): scif_connect() to port 68, failed

with error Connection refused

node01-mic0:MCM:2b66:e56a0b40: 2494 us(115 us): open_hca: SCIF init ERR for mlx4_0

Assertion failed in file

../../src/mpid/ch3/channels/nemesis/netmod/dapl/dapls_module_init.c

at line 761: 0

internal ABORT - process 0

Cause

The mpxyd daemon (CCL-proxy) is not running. The application was run over the dapl fabric. In such cases,

hang of the MPI application is possible.

Solution

Check the current status of the service. See the DAPL* documentation for details on mpxyd usage.

Example 4

Symptom/Error Message

node01-mic0:SCM:2b94:14227b40: 201 us(201 us): open_hca: ibv_get_device_list()

failed

node01-mic0:SCM:2b94:14227b40: 222 us(222 us): open_hca: ibv_get_device_list()

failed

node01-mic0:CMA:2b94:14227b40: 570 us(570 us): open_hca: getaddr_netdev ERROR:No

such device. Is ib0 configured?

...

Fatal error in MPI_Init: Other MPI error, error stack:

MPIR_Init_thread(784).................:

MPID_Init(1326).......................: channel initialization failed

MPIDI_CH3_Init(141)...................:

dapl_rc_setup_all_connections_20(1386): generic failure with errno = 872609295

getConnInfoKVS(849)...................: PMI_KVS_Get failed

Cause

The ofed-mic service is not running. The application was run over the dapl fabric. In such cases, hang of the

MPI application is possible.

Solution

Check the current status of the service. See the Intel® MPSS documentation for details on ofed-mic usage.

Example 5

Symptom/Error Message

pmi_proxy: line 0: exec: pmi_proxy: not found

Intel® MPI Library Developer Guide for Linux* OS

43

Cause

The Intel® MPI Library runtime scripts are not available. A possible reason is that the shared space cannot be

reached. In such cases, hang of the MPI application is possible.

Solution

Check if the shared path is available across all the nodes.

Example 6

Symptom/Error Message

[0] DAPL startup: RLIMIT_MEMLOCK too small

[0] MPI startup(): dapl fabric is not available and fallback fabric is not enabled

or:

node01:SCM:1c66:3f226b40: 6815816 us: DAPL ERR reg_mr Cannot allocate memory

Cause

Wrong system limits: the max locked memory is too small. The application was run over the dapl fabric.

Solution

Check the system limits and update them if necessary. The following example shows the correct system limits

configuration:

$ ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 0

file size (blocks, -f) unlimited

pending signals (-i) 256273

max locked memory (kbytes, -l) unlimited

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stack size (kbytes, -s) unlimited

cpu time (seconds, -t) unlimited

max user processes (-u) 1024

virtual memory (kbytes, -v) unlimited

file locks (-x) unlimited

Example 7

Symptom/Error Message

Are you sure you want to continue connecting (yes/no)? The authenticity of host

'node01 (<node01_ip_address>)' can't be established.

This message may repeat continuously until manual interruption.

Cause

The MPI remote node access mechanism is SSH. SSH is not configured properly: unexpected messages appear

in the standard input (stdin).

Solution

Check the SSH connection to the problem node.

Troubleshooting

44

Example 8

Symptom/Error Message

Password:

Cause

The MPI remote node access mechanism is SSH. SSH is not password-less. In such cases, hang of the MPI

application is possible.

Solution

Check the SSH settings: password-less authorization by public keys should be enabled and configured.

11.2.3. Other Problems

Example 1

Symptom/Error Message

cannot execute binary file

Cause

Wrong binary executable file format or architecture.

This error occurs when you run a binary executable file build for x86_64 architecture on a k1om node (for

example, on an Intel® Xeon Phi™ coprocessor). In such cases, hang of the MPI application is possible.

Solution

Verify the correctness of the binary file and the command line options.

Example 2

Symptom/Error Message

node01.9234ipath_userinit: assign_context command failed: Invalid argument

node01.9234Driver initialization failure on /dev/ipath (err=23)

Cause

Intel® True Scale IBA resource exhaustion. The MPI application was run over the tmi fabric.

Depending on Intel® True Scale Fabric hardware, PSM* may not support CPU over-subscription of the node.

The maximum amount of processes which can be run on the node is limited and depends on a combination of

the particular Intel® True Scale Fabric hardware and the amount of CPU cores.

Solution

Limit the number of MPI processes per node.

	Intel® MPI Library for Linux* OS Developer Guide
	Legal Information
	1. Introduction
	1.1. Introducing Intel® MPI Library
	1.2. Conventions and Symbols
	1.3. Related Information

	2. Installation and Licensing
	2.1. Installation
	2.2. Licensing for Intel® MPI Library Distributions

	3. Prerequisite Steps
	4. Compiling and Linking
	4.1. Compiling an MPI Program
	4.1.1. Compiling an MPI/OpenMP* Program
	4.1.2. Static vs. Dynamic Linking
	4.1.3. Adding Debug Information
	4.1.4. Test MPI Programs

	4.2. Compilers Support

	5. Running Applications
	5.1. Running an MPI Program
	5.2. Running an MPI/OpenMP* Program
	5.3. MPMD Launch Mode
	5.4. Job Schedulers Support
	5.4.1. Altair* PBS Pro*, TORQUE*, and OpenPBS*
	5.4.2. IBM* Platform LSF*
	5.4.3. Parallelnavi NQS*
	5.4.4. SLURM*
	5.4.5. Univa* Grid Engine*
	5.4.6. SIGINT, SIGTERM Signals Intercepting
	5.4.7. Controlling Per-Host Process Placement

	5.5. Cross-OS Launch Mode

	6. Configuring Program Launch
	6.1. Selecting Library Configuration
	6.2. Controlling Process Placement
	6.2.1. Specifying Hosts
	6.2.2. Using Machine File
	6.2.3. Using Argument Sets

	6.3. Selecting Fabrics
	6.3.1. Default Behavior
	6.3.2. Defining Fabric List
	6.3.3. Selecting Specific Fabric
	6.3.4. Advanced Fabric Control

	7. Debugging
	7.1. GDB*: The GNU* Project Debugger
	7.2. TotalView* Debugger
	7.2.1. Enabling Debug Session Restart
	7.2.2. Attaching to Process
	7.2.3. Displaying Message Queue

	7.3. DDT* Debugger
	7.4. Using -gtool for Debugging

	8. Statistics and Analysis
	8.1. Getting Debug Information
	8.2. Gathering Statistics
	8.2.1. Native Statistics
	8.2.2. IPM Statistics
	8.2.3. Native and IPM Statistics
	8.2.4. Region Control with MPI_Pcontrol

	8.3. Tracing and Correctness Checking
	8.3.1. High-Level Performance Analysis
	8.3.2. Tracing Applications
	8.3.3. Checking Correctness

	8.4. Interoperability with Other Tools

	9. Tuning with mpitune Utility
	9.1. Cluster Specific Tuning
	9.1.1. Reducing Tuning Time
	Tuning for Specific Fabrics
	Tuning for Specific Host Ranges
	Tuning for Specific Ranks per Host
	Tuning for Specific Message Sizes

	9.1.2. Replacing Default Benchmarks

	9.2. Application Specific Tuning
	9.2.1. Fast Application Specific Mode
	9.2.2. Topology-Aware Rank Placement Optimization
	Using Configuration File
	Using Optimized Host File
	Reducing Tuning Time

	9.3. General mpitune Capabilities
	9.3.1. Displaying Tasks Involved
	9.3.2. Enabling Silent Mode
	9.3.3. Setting Time Limit
	9.3.4. Improving Accuracy of Results

	9.4. Tuning Applications Manually

	10. Intel® Many Integrated Core Architecture Support
	10.1. Prerequisites
	10.2. Building MPI Applications
	10.3. Running MPI Applications

	11. Troubleshooting
	11.1. General Troubleshooting Procedures
	11.2. Examples of MPI Failures
	11.2.1. Communication Problems
	Example 1
	Symptom/Error Message
	Cause
	Solution

	Example 2
	Symptom/Error Message
	Cause
	Solution

	Example 3
	Symptom/Error Message
	Cause
	Solution

	Example 4
	Symptom/Error Message
	Cause
	Solution

	Example 5
	Symptom/Error Message
	Cause
	Solution

	11.2.2. Environment Problems
	Example 1
	Symptom/Error Message
	Cause
	Solution

	Example 2
	Symptom/Error Message
	Cause
	Solution

	Example 3
	Symptom/Error Message
	Cause
	Solution

	Example 4
	Symptom/Error Message
	Cause
	Solution

	Example 5
	Symptom/Error Message
	Cause
	Solution

	Example 6
	Symptom/Error Message
	Cause
	Solution

	Example 7
	Symptom/Error Message
	Cause
	Solution

	Example 8
	Symptom/Error Message
	Cause
	Solution

	11.2.3. Other Problems
	Example 1
	Symptom/Error Message
	Cause
	Solution

	Example 2
	Symptom/Error Message
	Cause
	Solution

