
 1

How to Use the Condo, CyEnce and CyStorm Clusters
Using Slurm

Glenn R. Luecke
February 17, 2017

Online Information and Help
If you experience problems and would like help, send an email to hpc-help@iastate.edu with
detailed information about the problem. Online documentation for Condo, CyEnce and CyStorm can
be found at:

• http://www.hpc.iastate.edu/guides/condo
• http://www.hpc.iastate.edu/guides/cyence
• http://www.hpc.iastate.edu/guides/cystorm

All ITS clusters have been or will soon be upgraded from using PBS to Slurm for job scheduling and
Red Hat operating system from version 6 to 7. This upgrade for the student cluster was completed by
January 1, 2017. The upgrade for the condo cluster is being accomplished spring semester 2017 and
it is hoped to have CyEnce and CyStorm completed by summer 2017.

Configuration of the Condo Cluster (installed spring 2015)
1. 168 compute nodes each with two 8-core, 2.6 GHz Intel Haswell E5-2640 v3 processors (16

cores/node), 128 GB of memory and 2.5 TB of available local disk ($TMPDIR). The peak
theoretical performance of this processor is 144/8 = 18.0 Gflops/core (with turbo boost). Turbo
boost is on for all nodes. Use the “cpuinfo” command to find additional information. The following
gives the cache structure for each node in the cluster:

• L1 32 KB one for each core (no sharing among cores)
• L2 256 KB one for each core (no sharing among cores)
• L3 20 MB one for each processor (shared among the 8 cores on the processor)

2. One “large” memory node with four 8-core, 2.6 GHz Intel Ivy Bridge E5-4620 v2 processors (32
cores/node), 1 TB of memory and 1.8 TB of available local disk ($TMPDIR). The peak theoretical
performance of this processor is 173/8 = 21.6 Gflops/core (with turbo boost).

3. One “huge” memory node with four, 10-core, 2.2 GHz Intel Ivy Bridge E7-4830 v2 processors
(40 cores/node), 2 TB of memory and 1.3 TB of available local disk ($TMPDIR). The peak
theoretical performance of this processor is 77/10 = 7.7 Gflops/core (with turbo boost).

4. All nodes and storage are connected via Intel/Qlogic’s QDR 40 Gb/s InfiniBand switch.
5. 256 TB shared temporary disk space named /ptmp.
6. 756 TB of RAID-6 long-term NFS disk space under quota
7. Operating System: Red Hat Enterprise Linux verson7 with Intel’s Hyper-Threading turned OFF
8. Slurm for resource and job management
9. Slurm Head Node (condo2017.its.iastate.edu – will revert to condo.its.iastate.edu after OS

and Slurm upgrade has been completed.
10. Data Transfer Node (condodtn)

Configuration of the CyEnce cluster (installed summer 2013 along with hpc-class)
1. 240 compute nodes each with two 8-core, 2.0 GHz Intel Sandy Bridge E5-2650 processors (16

cores/node), 128 GB of memory and 2.5 TB of available local disk ($TMPDIR). The peak
theoretical performance of this processor is 179/8 = 22.4 Gflops/core (with turbo boost). Turbo

 2

boost is on for all nodes. Use the “cpuinfo” command to find additional information. The cache
structure for all nodes is the same as for the Condo cluster.

2. One large memory (“fat”) node with four, 8-core, 2.0GHz Intel Sandy Bridge processors (32
cores/node, 1 TB of memory and 2.5 TB of available local disk ($TMPDIR).

3. 16 GPU nodes configured as a compute node plus 2 NVIDIA K20s.
4. 16 Phi nodes configured as a compute node plus 2 Intel Phi co-processors.
5. All nodes and storage are connected via Intel/Qlogic’s QDR 40 Gb/s InfiniBand switch.
6. 288TB shared temporary disk space named /ptmp.
7. 768TB of RAID-6 long-term NFS disk space under quota
8. Operating System: Red Hat Enterprise Linux version 7 with Intel’s Hyper-Threading turned OFF
9. Slurm for resource and job management scheduled for completion by May 2017.
10. Gateway Node (discovery.its.iastate.edu), Head Node (share), Data Transfer Node (stream

Configuration of the CyStorm cluster (installed summer 2009)
1. Variety of compute nodes. Most compute nodes have two 4-core AMD Opteron 2345

processors *8 cores/node), 8 GB of memory and 1.5 GB of available local disk ($TMPDIR). Use
the “cpuinfo” command to find additional information.

2. 60 nodes are being used for Hadoop. For Hadoop information see:
http://www.hpc.iastate.edu/guides/cystorm/hadoop

3. Nodes connected via a 20 Gb/s InfiniBand switch.
4. 23TB of RAID-6 long-term NFS disk space under quota
5. TORQUE (PBS) for resource and job management with Slurm upgrade planned for summer 2017.
6. Head Node (cystorm.its.iastate.edu), Data Transfer Node (cystormdtn)
7. The operating system is Red Hat Enterprise Linux.

Obtaining an account & logging onto the Condo cluster
Those who have purchased both nodes and storage can use the Condo cluster. Nodes and storage
can be purchased by filling out the Condo Cluster Purchase Form at https://hpc-
ga.its.iastate.edu/condo_purchase/. To obtain an account send an email to hpc-help@iastate.edu .
LAS, Mathematics and Statistics have purchased nodes and storage for their researchers. To obtain
an account, contact

• For LAS send an email to researchit@iastate.edu
• For mathematics send an email to Cliff Bergman cbergman@iastate.edu
• For Statistics send an email to Michael Brekke mbrekke@iastate.edu

For security Google Authenticator is required to logon to the Condo cluster. Instructions on how to
install and use Google Authenticator are on the Condo web page:
http://www.hpc.iastate.edu/guides/condo/access-and-login

After your account has been set up, you will receive an email with information on how to logon to
Condo (condo2017.its.iastate.edu). Condo is directly accessible only from on-campus machines, i.e.
machines whose address ends in “.iastate.edu”. To access Condo from off-campus machines, use
the ISU VPN, see http://www.it.iastate.edu/howtos/vpn.

To logon issue: ssh username@condo2017.its.iastate.edu, where “username@” can be omitted if
the username on the machine from which you are issuing the ssh is the same as that on Condo. If
you need an X-session, change “ssh” to “ssh -X”. The vi (vim), iMacs and xemacs editors are
available.

 3

Obtaining an account and logging onto the CyEnce cluster
PIs on the NSF MRI grant and their students and collaborators can use the CyEnce cluster. To
obtain an account, PIs are to send an email to hpc-help@iastate.edu.

You must first logon to the gateway node (discovery.its.iastate.edu) and then from the gateway node
logon to the head node (share). Discovery is directly accessible from on-campus machines from off-
campus using the ISU VPN, see http://www.it.iastate.edu/howtos/vpn.

After your account has been set up, you will receive an email with information on how to logon. Issue

ssh username@discovery.its.iastate.edu [return]
ssh share [return]

(“username@” can be omitted if the username on the machine from which you are issuing the ssh is
the same as that on discovery.) If you need an X-session, change “ssh” to “ssh -X” when logging
onto discover and share. The vi (vim), emacs and xemacs editors are available.

Obtaining an account and logging onto the CyStorm cluster
ISU researchers may apply for an account on CyStorm at ISU's High Performance Computing
website, http://www.hpc.iastate.edu/access, by logging with their ISU NetID and password, and
submitting the form.

For security Google Authenticator is required to logon to CyStorm. Instructions on how to install
and use Google Authenticator are on the CyStorm cluster web page:
http://www.hpc.iastate.edu/guides/cystorm/access-and-login

After your account has been set up, you will receive an email with information on how to logon to
CyStorm (cystorm.its.iastate.edu). CyStorm is directly accessible only from on-campus machines, i.e.
machines whose address ends in “.iastate.edu”. To access CyStorm from off-campus machines, use
the ISU VPN, see http://www.it.iastate.edu/howtos/vpn.

To logon issue: ssh username@cystorm.its.iastate.edu, where “username@” can be omitted if the
username on the machine from which you are issuing the ssh is the same as that on CyStorm. If you
need an X-session, change “ssh” to “ssh -X”. The vi (vim), emacs and xemacs editors are available.

Creating the Work and /ptmp Directories
For both Condo and CyEnce, data is stored on two separate sets of storage servers: NFS storage for
permanent data storage (/work) and parallel storage (/ptmp) for temporary data storage and for
parallel I/O. CyStorm has NFS storage and no parallel storage. Along with the home directories, the
/work and /ptmp storage are accessible from all nodes.

Currently each user has 1 GB of home directory space, /home/<username>. In addition, each group
has a directory shared by all members of the group. Files should be stored in the work directory and
not in the home directory. The group working directories are located in /work on Condo and CyStorm
and/or in /work1, /work2 on CyEnce. To find your group issue “groups” on the head node. To find the
location of your work directory on CyEnce issue: ls -d /work*/<group>

 4

The cdw and cds utilities have been created to make the creation of the Work and Lustre/ptmp
directories easy. Issue

cdw to create the Work directory
cds to create your directory in /ptmp

Note that /ptmp is temporary storage where old files will be automatically deleted. Files you want to
keep should be copied from your directory in /ptmp to your work directory. Please delete your /ptmp
files when you have finished with them so that others can utilize this storage.

Normally, all jobs should be submitted from the work directory. However, since CyEnce and Condo
have parallel storage, jobs on these clusters using large files and/or large number of files > 1 MB
should be submitted from the /ptmp directory:

/ptmp/<group>/<username>

Using the Data Transfer Node (DTN)
On CyEnce the DTN is named “stream”, on Condo it is named “condodtn” and on CyStorm it is
named cystormdtn. The DTNs on Condo and CyEnce have 10 Gbit/second connections to the
campus network and to the internet allowing for fast transfer of data to on-campus and off-campus
machines. The DTN on CyStorm has a 1 Gbit/second connection to the campus network. The DTN
should be used to transfer data to and from the cluster. The DTN can also be used to compile large
programs when compilation on the head node fails with a segmentation fault.

To use the DTN ssh from the head node. All files and directories on the DTN are identical to those on
the head node. To ssh to condodtn use your university password. There are several ways of
transferring data to and from the DTN. If you have files on MyFiles
(https://www.it.iastate.edu/services/storage/myfiles), you can copy files to/from MyFiles and DTN.
You will need to issue 'kinit' and enter your university password. After entering your password, you
will be able to cd to /myfiles/<deptshare>, where <deptshare> is your departmental share name; this
is usually your department or college’s shortname, such as engr or las. Since files are not backed up,
users are encouraged to use MyFiles to back up files. To copy all files in your home directory on
condo2017, issue:

rsync -pvr /home/$USER/ /myfiles/Users/$USER/condo2017

You can also use scp and rsync to transfer files between computers. If you want to copy many files
and/or directories and/or large files, rsync is recommended over scp. An advantage of using rsync
instead of scp is that rsync will only copy files if they have been changed. The following are typical
examples using scp and rsync. One can replace “scp” or “scp -r” with “rsync -ae ssh” in the following
examples.

Example 1: To copy ~username/mydir/prog.c from hpc-class to ./mydir/prog.c in your current
directory on the DTN, issue the following on the DTN:

scp username@hpc-class.its.iastate.edu:mydir/prog.c ./mydir/prog.c OR
rsync -ae ssh username@hpc-class.its.iastate.edu:mydir/prog.c ./mydir/prog.c

Example 2: To copy the entire “mydir” directory in example 1 to the current directory on the DTN,
issue the following on the DTN: (The “/ “ is not needed, but without it the “.” is easy to miss.)

 5

scp -r username@hpc-class.its.iastate.edu:mydir ./ OR
rsync -ae ssh username@hpc-class.its.iastate.edu:mydir ./

Example 3: To copy all the files in “mydir” that end in .c from hpc-class to DTN, issue the following
on the DTN:

scp username@hpc-class.its.iastate.edu:mydir/*.c ./newdir OR
rsync -ae ssh username@hpc-class.its.iastate.edu:mydir/*.c ./newdir

Example 4: To copy prog1.f90 in your current directory on the DTN to prog2.f90 in your home
directory on hpc-class issue the following on the DTN:

scp prog1.f90 username@hpc-class.its.iastate.edu: prog2.f90 OR
rsync -ae ssh prog1.f90 username@hpc-class.its.iastate.edu: prog2.f90

If you’re using Windows computer, you probably don’t have scp available. In this case you can
download free SFTP/SCP client WinSCP.

Globus Online is the recommended when transferring large amounts of data. Globus Online is
available only on CyEnce and Condo. For information on how to use Globus Online, see
http://www.hpc.iastate.edu/guides/globus-online .

Software
The web site for each machine contains a listing of the software available for each machine. Groups
are responsible for paying for their own group specific software. Software installed by HPC Support is
managed by environment modules. The following are commonly used module commands:

module avail - displays all available modules
module load <module_name> - loads specified module
module unload <module_name> - unloads specified module
module list - lists all loaded modules
module purge - unloads all loaded modules

We recommend using the Intel module by adding the following two lines to all scripts: (The sample
scripts below illustrate this.)

module purge
module load intel
module load allinea

where the “module load allinea” is needed to use Allinea’s DDT, MAP and Performance Reports
tools.

Compilers

 6

The Intel Fortran (ifort) and C/C++ (icc) compilers are the recommended compilers. The GNU
(gfortran, gcc) and PGI (pgfortran, pgCC) compilers are also available. Compiler options can be
found by issuing

man <compiler_name>

Free format Fortran files must be named something.f90, C files must be named something.c and C++
files must be named something.cc. When one successfully compiles a program, the executable will
be placed in the file named “a.out” in your current directory. Use the -o option if you want the
executable to go to a different file, e.g ifort -o prog program.f90 will produce the executable “prog”
when the compile is successful.

Compiles are usually done on the head node. To prevent users from running computations on the
head node, memory limits on the head node are set low. This may result in segmentation fault when
compiling large programs. In this case you can compile your program on the DTN.

Debugging Options for Intel Compilers
The -g option produces symbolic debug information that allows one to use a debugger. The -debug
option turns on many of the debugging capabilities of the compiler. The -qopenmp option allows the
recognition of OpenMP directives/pragmas and should not be used if it is not needed. The debuggers
available are Allinea’s ddt, Intel’s Inspector XE (inspxe-cl and inspxe-gui), GNU’s gdb and PGI’s
pghpf. The recommended debugger is ddt. The following shows how to perform compiling for
debugging with automatic linking of Intel’s MPI libraries and producing an executable named “prog”.
Note, if you do not need the MPI library, change “mpiifort” to “ifort”, “mpiicc” to “icc” and “mpiicpc” to
“icpc”. Intel’s MPI Checker provides special checking for MPI programs. To use MPI Checker add
the -check-mpi to the mpirun command.

mpiifort -g -debug -check all -traceback -o prog prog.f90
mpiicc -g -debug -check-pointers=rw -check-uninit -traceback -o prog prog.c
mpiicpc -g -debug -check-pointers=rw -check-uninit -traceback -o prog prog.cc

Remarks:
• The -check all option turns on all run-time error checking for Fortran. (There appears to be no

equivalent option for Intel’s C/C++ compiler.)
• The -check-pointers=rw option enables checking of all indirect accesses through pointers and all

array accesses for Intel’s C/C++ compiler but not for Fortran.
• The -check-uninit option enables uninitialized variable checking for Intel’s C/C++ compiler. This

functionality is included in Intel’s Fortran -check all option.
• The -traceback option causes the compiler to generate extra information in the object file to

provide source code traceback information when a severe error occurs at run-time.

High Performance Options for Intel Compilers
The Intel compiler will generate code for the host processor being used with the -xHost or
equivalently -march=native option. Intel recommends the -O2 compiler option as the optimization
option that will usually give the best performance and this option is on by default. Intel also provides
the -O3, -ipo, -fast and -Ofast options that turn on many optimizations, but they sometimes slow
down program execution. The -ipo option turns on interprocedural analysis between procedures.
For best performance, experiment with the -02, -03, -ipo, -Ofast and -fast compiler options and find

 7

out which gives the best performance for your application. Choosing good compiler options can
significantly reduce execution time. If the application uses both MPI and OpenMP, then on must add
the -qopenmp option to the following:

 mpiifort -xHost -o prog prog.f90
 mpiicc -xHost -o prog prog.c
 mpiicpc -xHost -o prog prog.cc

On the Condo cluster the fat and huge nodes have older processors than the head node’s
processors. Thus compiles with the –xHost compiler option should be done on the fat/huge node
when compiling programs that will run on those nodes. For the fat/huge nodes compile commands
should be added to the job script so that the compiles will be performed on the fat/huge nodes.

Intel’s Optimization Report
Intel’s compiler option -qopt-report will generate a report gives the optimizations performed by the
compiler. The report will appear as *.optrpt, i.e. if the program compiled is prog.f90 then the
optimization report will be in file prog.optrpt.

How to run MPI and OpenMP jobs
Condo, CyEnce, CyStorm and the student cluster use the Slurm job scheduler. Jobs are submitted
using the sbatch command. For example, if the script file is named “prog.script”, then the job is
submitted for execution by issuing

sbatch prog.script - for regular compute nodes
sbatch -p fat prog.script - for the 1 TB node (-p can also be used within the script)
sbatch -p huge prog.script - for the 2 TB node (-p can also be used within the script)

The program will be compiled on the first node assigned to this job.

The compute nodes for Condo and CyEnce have 128 GB of memory and 2 processors with each
processor having 8 cores. Thus each node has 16 cores and 128 GB of memory (128/16 = 8 GB per
core). On CyStorm regular compute nodes have 8 GB of memory and 8 cores (1GB per core). For
help creating scripts on CyEnce, Condo and CyStorm (respectively) see:

http://hpcgroup.public.iastate.edu/HPC/CyEnce/CyEnce_script_writer.html
http://hpc.iastate.edu/guides/condo2017/slurm_job_script_writer
http://hpcgroup.public.iastate.edu/HPC/CyStorm/CyStorm_script_writer.html

One can also translate existing PBS scripts to Slurm using the pbs2sbatch command.

What follows below provides background information to help you run your MPI and MPI/OpenMP
programs using scripts on Condo and CyEnce. To run on CyStorm, these scripts will need to be
modified.

The -perhost n option on the mpirun command means that n MPI processes are assigned per node,
cycling through nodes in a round-robin fashion. If one wants 16 consecutive MPI processes assigned
to each node, one should use -perhost 16 (the default value is 16). If one wants 1 MPI process for

 8

each of the two processors/sockets on a node, then use -perhost 2. In order for this option to work,
first you need to execute the following command:

 export setenv I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=disable

Pinning MPI processes to cores: During program execution, the operating system may move MPI
processes to different cores on the same node. Remember that each processor/socket on a node
has its own memory and that memory accesses from one socket to the memory of the other socket
takes longer that memory accesses to the socket’s memory. Memory is allocated using “first touch”
and memory allocations remain in the same physical memory throughout the execution of the MPI
job. By turning on MPI process pinning, MPI processes cannot be moved to other cores during
program execution. MPI process pinning is on by default. If Intel changes this default, memory
pinning can be enabled by using the -genv option with the mpirun command. The following are
sometimes useful when using the -genv option with the mpirun command.

• -genv I_MPI_PIN on Turns on processor pinning. It is on by default.

• -genv I_MPI_PIN_PROCESSOR_LIST 0-15 Pins MPI process 0 to core 0, process 1 to core
1, . . . , process 15 to core 15. This is the default assignment.

• -genv I_MPI_PIN_PROCESSOR_LIST 0,8 Pins MPI processes to cores 0 and 8. This is

useful when running programs using both MPI and OpenMP.

• -genv I_MPI_PIN_DOMAIN socket Pins MPI processes to processors/sockets and is useful
for MPI/OpenMP programs since this option insures that the execution of OpenMP threads
cannot be moved to different sockets.

• -genv I_MPI_DEBUG 4 - prints process pinning information.

Adding “command time -v” before mpirun when in the bash shell provides an easy way to time your
program and to estimate its parallel efficiency by looking at the “Elapsed (wall clock) time”. Replacing
mpirun with command time –v mpirun in the following example scripts will cause the timing
information to be placed in the prog.errors file.

If one runs out of stack memory, then a segmentation fault error will be produced and the program will
not run. It is recommended to always remove this stacksize limit by issuing:

ulimit -s unlimited

Script 1: 64 MPI processes using 4 nodes
Suppose one wants to run a MPI program, prog.f90, with 64 MPI processes using all 64 cores on 4
nodes with a 3 hour and 20 minutes time limit with the output written to ./prog.out and error messages
written to ./prog.errors. Setting N to 4 means 4 nodes are reserved for your job. Since pinning MPI
processes to cores is the default, the -genv I_MPI_PIN on option need not be specified. (I suggest
you save this script as prog.script64 so you know that the script is for prog.f90 with 64 MPI
processes.)

 9

#!/bin/bash
SBATCH -o ./prog.out
SBATCH -e ./prog.errors
SBATCH -N 4
SBATCH -n 64
SBATCH -t 3:20:00
module purge
module load intel
module load allinea
ulimit -s unlimited
mpiifort -xHost -o prog prog.f90
export setenv I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=disable
mpirun -perhost 16 -np 64 ./prog

Script 2: 8 nodes with 8 MPI processes/node
If the above does not provide enough memory per MPI process, then the perhost 8 option on the
mpirun command can be used so that there will be 8 (instead of 16) MPI processes per node. To
keep the same number of MPI processes, the script specifies 8 instead of 4 nodes and 128 cores
instead of 64 cores. In the following script MPI processes are pinned to the first 4 cores on each of
the two processors/sockets on each node.

#!/bin/bash
SBATCH -o ./prog.out
SBATCH -e ./prog.errors
SBATCH -N 8
SBATCH -n 128
SBATCH -t 3:20:00
module purge
module load intel
module load allinea
ulimit -s unlimited
mpiifort -xHost -o prog prog.f90
export setenv I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=disable
mpirun -perhost 8 -genv I_MPI_PIN_PROCESSOR_LIST 0-3,8-11 -np 64 ./prog

Script 3: MPI with 4 nodes and 2 MPI processes/node+OpenMP
OpenMP is used for parallelization of shared memory computers and MPI for parallelization of
distributed (and shared) memory computers. Since memory is shared on a node, one can parallelize
with OpenMP within nodes and MPI between nodes. One could specify 1 MPI process per node and
use 16 OpenMP threads to parallelize within a node. However, since there are two
processors/sockets per node and since each processor has memory physically close to it, it is
generally recommended to use 2 MPI processes per node and use 8 OpenMP threads for the 8 cores
on each processor/socket. One can set the number of threads by either setting the
OMP_NUM_THREADS environment variable or by calling omp_set_num_threads in the program.
OpenMP parallelization requires the insertion of directives/pragmas into a program and then compiled
using the -qopenmp option. To configure script 3 to use the same number of cores as scripts 1
means that we want to use all 64 cores in 4 nodes and 2 MPI processes per node for a total of 8 MPI
processes.

To keep OpenMP threads active, set OMP_WAIT_POLICY=ACTIVE. To keep threads executing on
the same socket set OMP_PLACES=sockets and OMP_PROC_BIND= close. There is a default

 10

OpenMP stacksize and jobs that require more memory will produce a segmentation fault error
message and will not run. The OpenMP stacksize can be increased using the OMP_STACKSIZE
environment variable. For the student cluster, I recommend setting the OpenMP stacksize=1G and
=2G for the Condo and CyEnce clusters. The following is the recommended script when using both
MPI and OpenMP:

#!/bin/bash
SBATCH -o ./prog.out
SBATCH -e ./prog.errors
SBATCH –N 4
SBATCH –n 64
SBATCH –t 3:20:00
module purge
module load intel
module load allinea
ulimit -s unlimited
export setenv I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=disable
export OMP_WAIT_POLICY=ACTIVE
export OMP_PROC_BIND=close
export OMP_PLACES=sockets
export OMP_STACKSIZE=2G
mpiifort -xHost -qopenmp -o prog prog.f90
mpirun -perhost 2 -genv I_MPI_PIN_DOMAIN socket -np 8 ./prog

Note: If one wants to pin threads to cores and not allow threads to move between cores, then replace

export OMP_PROC_BIND=close
export OMP_PLACES=sockets

with

export OMP_PROC_BIND=true

Calling MPI routines outside of OpenMP parallel regions does not require the replacement of mpi_init
with mpi_init_thread. However, when placing MPI calls inside parallel regions, then one must replace
the call to mpi_init(ierror) with mpi_init_thread(required, provided, ierror) where required is the desired
level of thread support and provided is the thread support provided. The following are the values
required can have:

• MPI_THREAD_SINGLE: only one thread will execute.
• MPI_THREAD_FUNNELED: The process may be multi-threaded, but only the main thread will

make MPI calls (all MPI calls are funneled to the main thread).
• MPI_THREAD_SERIALIZED: The process may be multi-threaded, and multiple threads may

make MPI calls, but only one at a time: MPI calls are not made concurrently from two distinct
threads (all MPI calls are serialized).

• MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no restrictions.
For best performance, use the least general option possible. Notice that one can overlap
communication and computation by having one thread execute MPI routines and the other threads
are free to do computations. There is also a possibility of reducing memory requirements over a pure
MPI implementation since processor cores share a common memory.

 11

Script 4: OpenMP with 1 Node
On CyEnce, there is one large memory node, called “fat” that has 1 TB of memory and 4
processor/sockets (32 total cores). Condo has two large memory nodes: one is called “fat” and has
1 TB of memory and 32 cores and the other is called “huge” and has 2 TB of memory and 40 cores.
The recommended way to use the large memory nodes is to use 32 or 40 OpenMP threads by setting
omp_set_num_threads(32 or 40) in the program. One must use sbatch -p fat to submit jobs for the 1
TB memory node and sbatch -p huge for the 2 TB node. Notice the compiler command inside the
script so that the program will be compiled on the large memory node where it will execute. This is
important since these nodes use different processors from the regular compute nodes.

#!/bin/bash
SBATCH -o ./prog.out
SBATCH -e ./prog.errors
SBATCH -N 1
SBATCH -n 32 (or 40)
SBATCH -t 3:20:00
module purge
module load intel
module load allinea
ulimit -s unlimited
export OMP_WAIT_POLICY=ACTIVE
export OMP_PROC_BIND=close
export OMP_PLACES=sockets
export OMP_STACKSIZE=2G
ifort -xHost -qopenmp -o prog prog.f90
./prog

Job Queue Commands
1. sbatch prog.script - submits the script in file prog.script
2. squeue - status of all jobs executing and queued
3. squeue –u <your_userid> status of only your jobs – useful when there are many jobs
4. sinfo - status of all queues and the current queue structure
5. scancel # - deletes the job with number #. One can only delete one’s jobs.

How many nodes should one use?
The answer depends on the problem size and how well your application has been parallelized. Often
applications will require a minimum number of nodes due to large memory requirements. Once this
minimum number of nodes has been established, one must decide how many nodes to use for
running the application. For example, let's take an MPI parallelization of the Jacobi iteration with N =
4*1024 and N = 64*1024 using differing numbers of nodes. Both of these problem sizes can be run
on a single node, so the question is how many nodes should one use. The following numbers were
obtained running on ISU CyEnce cluster in the fall of 2013.

For N = 4*1024, it is best to use 1 node for this program if one wants to make best use of the
allocation and use 8 nodes to minimize the execution time, see Table 1. For N = 64*1024, using 64
nodes gives the shortest time and the cost for the allocation is not much different from the best value
using only 1 node, see Table 2.

 12

Number of Nodes Seconds for N = 4*1024 Node-Seconds for N = 4*1024
1 3.3 3.3
2 2.3 4.6
4 1.3 5.2
8 0.8 6.4

16 1.8 28.8
Table 1: Jacobi iteration with N = 4*1024 using different numbers of nodes.

Number of Nodes Seconds for N = 64*1024 Node-Seconds for N = 64*1024
1 875.6 875.6
2 442.4 884.8
4 224.7 898.8
8 113.8 910.4

16 59.4 950.4
32 32.6 1,043.2
64 17.2 1,100.8

Table 2: Jacobi iteration with N = 64*1024 using different numbers of nodes.

The Student Cluster (hpc-class)
The purpose of the student cluster is to support HPC instruction at ISU. Compute nodes are identical
to the compute nodes on Condo and CyEnce but with half the memory. There are 4 GPU nodes
each with a single K20. There are 4 Phi nodes each with a single Phi co-processor. For information
see: http://www.hpc.iastate.edu/education/

Using Intel’s Math Kernel Library
Intel provides highly optimized scientific library routines for Fortran and some C versions in their Math
Kernel Library (MKL). You should call these routines from your program whenever possible to
increase the performance of your application. For documentation see http://software.intel.com/en-
us/articles/intel-math-kernel-library-documentation . Intel provides a tool to help one select the
correct link –L and –l options to add to a Fortran or C/C++ compile/link command and to correctly set
environmental variables. This tool is available at: http://software.intel.com/en-us/articles/intel-mkl-
link-line-advisor . To link the MKL serial optimized libraries compile your program with ifort -
mkl=sequential.

How to use the Accelerator Nodes
Both the student cluster and CyEnce clusters have accelerator nodes but the Condo cluster does not.
Information on how to use the accelerator nodes can be found on the web sites of these clusters.

 13

ISU HPC Courses
Parallel computing techniques taught in the courses listed below will allow students to take discipline
specific courses that teach parallel algorithms relevant to the discipline.

Math/ComS/CprE 424: Introduction to Scientific Computing (3 credits)
For students with no unix experience and no experience in writing scientific programs in C or Fortran
Course topics: Unix, high performance serial and shared memory parallel programming with
OpenMP. Offered fall semesters

Math/ComS/CprE 525: High Performance Computing (3 credits)
For students with unix experience and experience in writing scientific programs in C or Fortran.
Course topics: HPC concepts and terminology, HPC machine architecture, how to use debugging
and performance tools, advanced parallel programming with MPI, OpenMP and possibly OpenACC
and/or CUDA. Offered spring semesters.

